30 lines
1.2 KiB
Agda
30 lines
1.2 KiB
Agda
|
|
open import Level using (Level)
|
|||
|
|
-- open import Category.Core
|
|||
|
|
-- open import Relation.Binary.PropositionalEquality using (_≡_; refl)
|
|||
|
|
-- open import Data.Product using (_×_; Σ-syntax; _,_)
|
|||
|
|
-- open Category
|
|||
|
|
-- open Functor
|
|||
|
|
|
|||
|
|
module Category.Instances.Cat {ℓ₁ ℓ₂ ℓ₃ : Level} where
|
|||
|
|
|
|||
|
|
-- Cat : Category
|
|||
|
|
-- Cat .Obj = Category {ℓ₁} {ℓ₂} {ℓ₃}
|
|||
|
|
-- Cat .Hom 𝐂 𝐃 = Functor 𝐂 𝐃
|
|||
|
|
-- -- Cat ._≈_ {𝐂} {𝐃} 𝐅₁ 𝐅₂ = (∀ a → F₀ 𝐅₁ a ≡ F₀ 𝐅₂ a) × (∀ f → (_≈_ 𝐃) (F₁ 𝐅₁ f) {!!})
|
|||
|
|
-- Cat ._≈_ {𝐂} {𝐃} 𝐅₁ 𝐅₂ = Σ[ h ∈ (∀ a → F₀ 𝐅₁ a ≡ F₀ 𝐅₂ a) ]
|
|||
|
|
-- ∀ {a b : Obj 𝐂} → ∀ (f : Hom 𝐂 a b) → {!!}
|
|||
|
|
-- where
|
|||
|
|
-- transport : (a b : Obj 𝐂)
|
|||
|
|
-- → (F₀ 𝐅₁ a ≡ F₀ 𝐅₂ a)
|
|||
|
|
-- → (F₀ 𝐅₁ b ≡ F₀ 𝐅₂ b)
|
|||
|
|
-- → (Hom 𝐃 (F₀ 𝐅₁ a) (F₀ 𝐅₁ b))
|
|||
|
|
-- → (Hom 𝐃 (F₀ 𝐅₂ a) (F₀ 𝐅₂ b))
|
|||
|
|
-- transport a b h₁ h₂ H = {!!}
|
|||
|
|
-- Cat ._∘_ = {!!}
|
|||
|
|
-- Cat .𝟙 = {!!}
|
|||
|
|
-- Cat .assoc = {!!}
|
|||
|
|
-- Cat .identity-ˡ = {!!}
|
|||
|
|
-- Cat .identity-ʳ = {!!}
|
|||
|
|
-- Cat .equiv = {!!}
|
|||
|
|
-- Cat .≈-resp-∘ = {!!}
|