Category-Theory/src/Category/Instances/Monoid.agda

22 lines
578 B
Agda
Raw Normal View History

2024-10-13 19:28:44 -07:00
open import Category.Core
open Category
open import Algebra using (Monoid)
open import Data.Unit using (; tt)
module Category.Instances.Monoid {c } (M : Monoid c ) where
open Monoid M renaming (Carrier to S; _≈_ to _M≈_; assoc to Massoc)
MonoidCat : Category
MonoidCat .Obj =
MonoidCat .Hom tt tt = S
MonoidCat ._≈_ = _M≈_
MonoidCat ._∘_ = _∙_
MonoidCat .𝟙 = ε
MonoidCat .assoc f g h = sym (Massoc f g h)
MonoidCat .identity-ˡ = identityˡ
MonoidCat .identity-ʳ = identityʳ
MonoidCat .equiv = isEquivalence
MonoidCat .≈-resp-∘ = ∙-cong