open import Level using (Level) -- open import Category.Core -- open import Relation.Binary.PropositionalEquality using (_≡_; refl) -- open import Data.Product using (_×_; Σ-syntax; _,_) -- open Category -- open Functor module Category.Instances.Cat {ℓ₁ ℓ₂ ℓ₃ : Level} where -- Cat : Category -- Cat .Obj = Category {ℓ₁} {ℓ₂} {ℓ₃} -- Cat .Hom 𝐂 𝐃 = Functor 𝐂 𝐃 -- -- Cat ._≈_ {𝐂} {𝐃} 𝐅₁ 𝐅₂ = (∀ a → F₀ 𝐅₁ a ≡ F₀ 𝐅₂ a) × (∀ f → (_≈_ 𝐃) (F₁ 𝐅₁ f) {!!}) -- Cat ._≈_ {𝐂} {𝐃} 𝐅₁ 𝐅₂ = Σ[ h ∈ (∀ a → F₀ 𝐅₁ a ≡ F₀ 𝐅₂ a) ] -- ∀ {a b : Obj 𝐂} → ∀ (f : Hom 𝐂 a b) → {!!} -- where -- transport : (a b : Obj 𝐂) -- → (F₀ 𝐅₁ a ≡ F₀ 𝐅₂ a) -- → (F₀ 𝐅₁ b ≡ F₀ 𝐅₂ b) -- → (Hom 𝐃 (F₀ 𝐅₁ a) (F₀ 𝐅₁ b)) -- → (Hom 𝐃 (F₀ 𝐅₂ a) (F₀ 𝐅₂ b)) -- transport a b h₁ h₂ H = {!!} -- Cat ._∘_ = {!!} -- Cat .𝟙 = {!!} -- Cat .assoc = {!!} -- Cat .identity-ˡ = {!!} -- Cat .identity-ʳ = {!!} -- Cat .equiv = {!!} -- Cat .≈-resp-∘ = {!!}