161 lines
5.7 KiB
Python
161 lines
5.7 KiB
Python
|
|
#https://www.desmos.com/calculator/1aoycwgvuz
|
||
|
|
|
||
|
|
from real6v6f1node import Node
|
||
|
|
import math
|
||
|
|
import numpy as np
|
||
|
|
import time
|
||
|
|
from scipy.sparse import csr_matrix
|
||
|
|
|
||
|
|
def functions(n, z):
|
||
|
|
if n == 0:
|
||
|
|
return -1*np.conj(z)
|
||
|
|
else:
|
||
|
|
duals = [[],[0.60056621200156+1j,0.60056621200156],
|
||
|
|
[1.11757463364131127+0.028662703870927425j,0.49979457015027892407],
|
||
|
|
[0.63600982475703-1j,0.63600982475703],
|
||
|
|
[0.312309249205871+0.133830541363598j,0.312309249205871],
|
||
|
|
[0.174700306168316-0.333333333333333j,0.174700306168316]]
|
||
|
|
return duals[n][0] + np.conj((duals[n][1])**2 / (z-duals[n][0]))
|
||
|
|
|
||
|
|
def derivatives(n, z):
|
||
|
|
if n == 0:
|
||
|
|
return abs(-1)
|
||
|
|
else:
|
||
|
|
duals = [[],[0.60056621200156+1j,0.60056621200156],
|
||
|
|
[1.11757463364131127+0.028662703870927425j,0.49979457015027892407],
|
||
|
|
[0.63600982475703-1j,0.63600982475703],
|
||
|
|
[0.312309249205871+0.133830541363598j,0.312309249205871],
|
||
|
|
[0.174700306168316-0.333333333333333j,0.174700306168316]]
|
||
|
|
return abs(-1*((z-duals[n][0])**2) / ((duals[n][1])**2))
|
||
|
|
|
||
|
|
def samplePoint(word):
|
||
|
|
points = [-0.5, 0.5+0.7j, 0.9+0.05j, 0.45-0.75j, 0.3+0.1j, 0.15-0.33j]
|
||
|
|
p = points[word[-1]]
|
||
|
|
for letter in word[-2::-1]:
|
||
|
|
p = functions(letter, p)
|
||
|
|
return p
|
||
|
|
|
||
|
|
def sampleValue(word):
|
||
|
|
return derivatives(word[0], samplePoint(word))
|
||
|
|
|
||
|
|
def generateTree(words, dc):
|
||
|
|
generators = [np.array([[0., -0.618034, 0., 2.23607, -0.527864, 2.8541], [0., -1., 0.,
|
||
|
|
5.23607, -2.47214, 7.23607], [0., 0., 0., 1.61803, -1.,
|
||
|
|
1.61803], [0., 0., 0., 1., 0., 0.], [0., 0., 0., 0., 1., 0.], [0.,
|
||
|
|
0., 0., 0., 0., 1.]]),
|
||
|
|
np.array([[0., 2.61803, 2.61803, 0., -0.381966, 3.8541], [0., 1., 0., 0., 0.,
|
||
|
|
0.], [0., 0., 1., 0., 0., 0.], [0., 3.23607, 5.8541, 0., -0.618034,
|
||
|
|
6.23607], [0., 5.23607, 8.47214, 0., -1., 11.7082], [0., 0., 0., 0.,
|
||
|
|
0., 1.]]),
|
||
|
|
np.array([[1., 0., 0., 0., 0., 0.], [0., 1., 0., 0., 0., 0.], [3., 2.61803,
|
||
|
|
0., -0.618034, 0., 3.23607], [6.47214, 3.23607, 0., -1., 0.,
|
||
|
|
5.23607], [7.47214, 2.61803, 0., -1., 0., 6.8541], [0., 0., 0., 0.,
|
||
|
|
0., 1.]]),
|
||
|
|
np.array([[1., 0., 0., 0., 0., 0.], [6.8541, 0., 0., -1.61803, 3.61803,
|
||
|
|
5.8541], [5.23607, 0., 0., -1.61803, 4.23607, 4.8541], [3.23607, 0.,
|
||
|
|
0., -1., 3.23607, 2.], [0., 0., 0., 0., 1., 0.], [0., 0., 0., 0.,
|
||
|
|
0., 1.]]),
|
||
|
|
np.array([[1., 0., 0., 0., 0., 0.], [0., 1., 0., 0., 0., 0.], [-1., 0.618034,
|
||
|
|
0., 0.618034, 0., 0.], [0., 0., 0., 1., 0., 0.], [1., 1.38197, 0.,
|
||
|
|
2.23607, 0., -1.61803], [0., 1.23607, 0., 0.763932, 0., -1.]]),
|
||
|
|
np.array([[1., 0., 0., 0., 0., 0.], [10.0902, 0., 0., 6.8541,
|
||
|
|
6.8541, -2.61803], [5.23607, 0., 0., 4.8541,
|
||
|
|
4.23607, -1.61803], [0., 0., 0., 1., 0., 0.], [0., 0., 0., 0., 1.,
|
||
|
|
0.], [3.23607, 0., 0., 2., 3.23607, -1.]])]
|
||
|
|
root = Node([2.73606797749979, 3.88196601125011, 2.30901699437495, \
|
||
|
|
4.28115294937453, 3.00000000000000, -1.00000000000000], [], words, False)
|
||
|
|
current_leaves = [root]
|
||
|
|
nodes = 1
|
||
|
|
while True:
|
||
|
|
new_leaves = []
|
||
|
|
for leaf in current_leaves:
|
||
|
|
next_gen = leaf.next_generation(words, dc, generators)
|
||
|
|
new_leaves += next_gen
|
||
|
|
nodes += len(next_gen) if len(next_gen) > 1 else 0
|
||
|
|
if current_leaves == new_leaves:
|
||
|
|
break
|
||
|
|
else:
|
||
|
|
current_leaves = new_leaves
|
||
|
|
for i,leaf in enumerate(current_leaves):
|
||
|
|
words[str(leaf.word)] = i
|
||
|
|
print(len(current_leaves), "partitions")
|
||
|
|
print(nodes,"nodes")
|
||
|
|
return current_leaves
|
||
|
|
|
||
|
|
def constructMatrix(words, dc):
|
||
|
|
leave = generateTree(words, dc)
|
||
|
|
row = []
|
||
|
|
col = []
|
||
|
|
data = []
|
||
|
|
for i,leaf in enumerate(leave):
|
||
|
|
thing = words[str(leaf.word[1:])]
|
||
|
|
if isinstance(thing,int):
|
||
|
|
row.append(i)
|
||
|
|
col.append(thing)
|
||
|
|
data.append(sampleValue(leaf.word))
|
||
|
|
else:
|
||
|
|
sample = sampleValue(leaf.word)
|
||
|
|
for wor in thing.leaves():
|
||
|
|
row.append(i)
|
||
|
|
col.append(words[str(wor.word)])
|
||
|
|
data.append(sample)
|
||
|
|
return csr_matrix((data,(row,col)),shape=(len(leave),len(leave)))
|
||
|
|
|
||
|
|
def secant(x0,y0,x1,y1,z):
|
||
|
|
return x0 - (y0-z) * ((x1-x0)/(y1-y0))
|
||
|
|
|
||
|
|
def matrixFunction(matrix,l,a):
|
||
|
|
matrix = matrix.power(a)
|
||
|
|
vec = np.ones(l)
|
||
|
|
previous_entry = vec[0]
|
||
|
|
previous_val = 0
|
||
|
|
current = matrix * vec
|
||
|
|
current_val = current[0] / previous_entry
|
||
|
|
count = 0
|
||
|
|
while count < 10000000000 and abs(current_val - previous_val) > 1e-15:
|
||
|
|
previous_val = current_val
|
||
|
|
previous_entry = current[0]
|
||
|
|
current = matrix * current
|
||
|
|
#print(current[0],previous_entry)
|
||
|
|
current_val = current[0] / previous_entry
|
||
|
|
count += 1
|
||
|
|
print("power method:", count)
|
||
|
|
return current_val
|
||
|
|
|
||
|
|
def secantMethod(matrix,l,z,x1,x2,e,its):
|
||
|
|
k1 = x1
|
||
|
|
k2 = x2
|
||
|
|
y1 = matrixFunction(matrix,l,k1)
|
||
|
|
y2 = matrixFunction(matrix,l,k2)
|
||
|
|
#y1 = testFunction(k1)
|
||
|
|
#y2 = testFunction(k2)
|
||
|
|
count = 1
|
||
|
|
print(count,k1,y1)
|
||
|
|
while abs(y1-z)>e and count<its:
|
||
|
|
k3 = secant(k1,y1,k2,y2,z)
|
||
|
|
k1 = k2
|
||
|
|
y1 = y2
|
||
|
|
k2 = k3
|
||
|
|
y2 = matrixFunction(matrix,l,k2)
|
||
|
|
#y2 = testFunction(k2)
|
||
|
|
count += 1
|
||
|
|
print(count,k1,y1)
|
||
|
|
|
||
|
|
def main():
|
||
|
|
start = time.time()
|
||
|
|
|
||
|
|
words = {}
|
||
|
|
|
||
|
|
m = 500
|
||
|
|
print("maximum:",m)
|
||
|
|
matrix = constructMatrix(words,m)
|
||
|
|
#print(matrix)
|
||
|
|
|
||
|
|
print("construction (s): %f\nconstruction (m): %f" % (time.time()-start, (time.time()-start)/60))
|
||
|
|
#print(csr_matrix.transpose(matrix))
|
||
|
|
print(csr_matrix.count_nonzero(matrix), (matrix.shape[0])*5)
|
||
|
|
secantMethod(matrix,matrix.shape[0],1,1.33,1.34,10**(-10),1000)
|
||
|
|
|
||
|
|
print("total (s): %f\ntotal (m): %f" % (time.time()-start, (time.time()-start)/60))
|
||
|
|
|
||
|
|
main()
|