2021-06-25 07:52:42 -07:00
|
|
|
#![allow(dead_code)]
|
2021-06-23 12:16:41 -07:00
|
|
|
|
2021-06-25 07:52:42 -07:00
|
|
|
mod diff;
|
2021-06-25 11:24:22 -07:00
|
|
|
mod integration;
|
2021-06-23 12:16:41 -07:00
|
|
|
|
2021-06-25 07:52:42 -07:00
|
|
|
use diff::*;
|
|
|
|
|
use num_complex::Complex64;
|
|
|
|
|
use std::f64::consts::PI;
|
|
|
|
|
// use nalgebra::{SMatrix, SVector};
|
2021-06-23 12:16:41 -07:00
|
|
|
|
2021-06-25 07:52:42 -07:00
|
|
|
type F = f64;
|
2021-06-25 11:24:22 -07:00
|
|
|
type Matrix2x2 = nalgebra::SMatrix<Complex64, 2, 2>;
|
|
|
|
|
type MatrixBig = nalgebra::SMatrix<Complex64, NC2, NC2>;
|
|
|
|
|
type MatrixBigr = nalgebra::SMatrix<f64, NC2, NC2>;
|
|
|
|
|
|
|
|
|
|
const G: Matrix2x2 = Matrix2x2::new(
|
|
|
|
|
Complex64::new(-2.0 / 12.0, -2.0 / 12.0),
|
|
|
|
|
Complex64::new(-1.0 / 12.0, -5.0 / 12.0),
|
|
|
|
|
Complex64::new(4.0 / 12.0, -4.0 / 12.0),
|
|
|
|
|
Complex64::new(-2.0 / 12.0, -10.0 / 12.0),
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
const R: Matrix2x2 = Matrix2x2::new(
|
|
|
|
|
Complex64::new(-6.0 / 12.0, 8.0 / 12.0),
|
|
|
|
|
Complex64::new(0.0, 11.0 / 12.0),
|
|
|
|
|
Complex64::new(0.0, 4.0 / 12.0),
|
|
|
|
|
Complex64::new(-6.0 / 12.0, -8.0 / 12.0),
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
const NC: usize = 10;
|
|
|
|
|
const K0: i32 = 100;
|
|
|
|
|
const LC: usize = 15;
|
|
|
|
|
const NC2: usize = NC * NC;
|
|
|
|
|
|
|
|
|
|
fn fancy_l(q: f64) -> MatrixBigr {
|
|
|
|
|
MatrixBigr::from_diagonal_element(2.0) * fancy_m(q).map(|z| z.re)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn integral_choose(n: i32, k: i32) -> f64 {
|
|
|
|
|
match k.cmp(&0) {
|
|
|
|
|
std::cmp::Ordering::Less => 0.0,
|
|
|
|
|
std::cmp::Ordering::Equal => 1.0,
|
|
|
|
|
std::cmp::Ordering::Greater => {
|
|
|
|
|
(0..k).map(|i|
|
|
|
|
|
(n - i) as f64 / (k - i) as f64
|
|
|
|
|
).product()
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn non_integral_choose(q: f64, k: i32) -> f64 {
|
|
|
|
|
match k.cmp(&0) {
|
|
|
|
|
std::cmp::Ordering::Less => 0.0,
|
|
|
|
|
std::cmp::Ordering::Equal => 1.0,
|
|
|
|
|
std::cmp::Ordering::Greater => {
|
|
|
|
|
(0..k).map(|i|
|
|
|
|
|
(q - i as f64) / (k - i) as f64
|
|
|
|
|
).product()
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn normal_m(k: i32, q: f64, n: i32, s: i32) -> Complex64 {
|
|
|
|
|
let ak = R + Matrix2x2::from_diagonal_element(Complex64::new(k as f64, 0.0)) * G;
|
|
|
|
|
let a11 = ak[(0, 0)];
|
|
|
|
|
let a12 = ak[(0, 1)];
|
|
|
|
|
let a21 = ak[(1, 0)];
|
|
|
|
|
let a22 = ak[(1, 1)];
|
|
|
|
|
|
|
|
|
|
(0..=s)
|
|
|
|
|
.map(|j| {
|
|
|
|
|
non_integral_choose(-n as f64 - q, j)
|
|
|
|
|
* integral_choose(n, s - j)
|
|
|
|
|
* a21.powi(k)
|
|
|
|
|
* a22.powf(-n as f64 - q - j as f64)
|
|
|
|
|
* a11.powi(s - j)
|
|
|
|
|
* a12.powi(n - s + k)
|
|
|
|
|
})
|
|
|
|
|
.sum()
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn fancy_m(q: f64) -> MatrixBig {
|
|
|
|
|
let mut fancy_m = MatrixBig::zeros();
|
|
|
|
|
for m in 0..NC {
|
|
|
|
|
for n in 0..NC {
|
|
|
|
|
for r in 0..NC {
|
|
|
|
|
for s in 0..NC {
|
|
|
|
|
if m <= n {
|
|
|
|
|
let mut sum = Complex64::new(0.0, 0.0);
|
|
|
|
|
for k in 1..K0 {
|
|
|
|
|
sum += normal_m(k, q, n as i32, s as i32)
|
|
|
|
|
* normal_m(k as i32, q, m as i32, r as i32).conj();
|
|
|
|
|
}
|
|
|
|
|
fancy_m[(m * NC + n, r * NC + s)] = sum;
|
|
|
|
|
} else {
|
|
|
|
|
fancy_m[(m * NC + n, r * NC + s)] =
|
|
|
|
|
fancy_m[(n * NC + m, s * NC + r)].conj();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
fancy_m
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn secant_method(f: fn(F) -> F, target: F, x0: F, x1: F, accuracy: F, iterations: usize) -> F {
|
2021-06-23 12:16:41 -07:00
|
|
|
let mut x0 = x0;
|
|
|
|
|
let mut x1 = x1;
|
|
|
|
|
let mut y0 = f(x0);
|
|
|
|
|
let mut y1 = f(x1);
|
|
|
|
|
let mut count = 0;
|
|
|
|
|
|
2021-06-25 11:24:22 -07:00
|
|
|
println!("f({}) =\t{}", x1, y1);
|
|
|
|
|
while (y1 - target).abs() >= accuracy && count < iterations {
|
|
|
|
|
let new_x = x0 - (y0 - target) * (x1 - x0) / (y1 - y0);
|
|
|
|
|
x0 = x1;
|
|
|
|
|
x1 = new_x;
|
|
|
|
|
y0 = y1;
|
|
|
|
|
y1 = f(x1);
|
|
|
|
|
println!("f({}) =\t{}", x1, y1);
|
|
|
|
|
count += 1;
|
2021-06-23 12:16:41 -07:00
|
|
|
}
|
|
|
|
|
x0
|
|
|
|
|
}
|
|
|
|
|
|
2021-06-25 11:24:22 -07:00
|
|
|
fn power_method<const N: usize>(
|
|
|
|
|
vec: nalgebra::SVector<f64, N>,
|
|
|
|
|
mat: nalgebra::SMatrix<f64, N, N>,
|
|
|
|
|
iterations: usize,
|
|
|
|
|
) -> f64 {
|
|
|
|
|
let mut current = vec;
|
|
|
|
|
let mut previous = vec;
|
|
|
|
|
for _ in 0..iterations {
|
|
|
|
|
previous = current;
|
|
|
|
|
current = mat * current;
|
|
|
|
|
println!("current eigenvalue: {}", current[0] / previous[0]);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
current[0] / previous[0]
|
|
|
|
|
}
|
|
|
|
|
|
2021-06-25 07:52:42 -07:00
|
|
|
fn dzdt(t: f64) -> Complex64 {
|
|
|
|
|
Complex64::new(
|
2021-06-25 11:24:22 -07:00
|
|
|
-2.0 * PI * (2.0 * PI * t).sin(),
|
|
|
|
|
2.0 * PI * (2.0 * PI * t).cos(),
|
2021-06-25 07:52:42 -07:00
|
|
|
)
|
|
|
|
|
}
|
|
|
|
|
|
2021-06-25 11:24:22 -07:00
|
|
|
fn lambda(q: f64) -> f64 {
|
|
|
|
|
let lq = fancy_l(q);
|
|
|
|
|
let mut phi0 = nalgebra::SVector::zeros();
|
|
|
|
|
phi0[0] = 1.0;
|
|
|
|
|
power_method(phi0, lq, 10)
|
|
|
|
|
}
|
|
|
|
|
|
2021-06-23 12:16:41 -07:00
|
|
|
fn main() {
|
2021-06-25 11:24:22 -07:00
|
|
|
println!("{}", non_integral_choose(15.3, 3));
|
|
|
|
|
println!("{}", normal_m(3, 1.3, 2, 1));
|
|
|
|
|
// secant_method(lambda, 1.0, 1.3, 1.31, f64::EPSILON, 10);
|
2021-06-23 12:16:41 -07:00
|
|
|
}
|