1158 lines
49 KiB
Mathematica
1158 lines
49 KiB
Mathematica
|
|
(*CacheID: 234*)
|
||
|
|
(* Internal cache information:
|
||
|
|
NotebookFileLineBreakTest
|
||
|
|
NotebookFileLineBreakTest
|
||
|
|
NotebookDataPosition[ 0, 0]
|
||
|
|
NotebookDataLength[ 49948, 1156]
|
||
|
|
NotebookOptionsPosition[ 46613, 1092]
|
||
|
|
NotebookOutlinePosition[ 47014, 1108]
|
||
|
|
CellTagsIndexPosition[ 46971, 1105]
|
||
|
|
WindowFrame->Normal*)
|
||
|
|
|
||
|
|
(* Beginning of Notebook Content *)
|
||
|
|
Notebook[{
|
||
|
|
|
||
|
|
Cell[CellGroupData[{
|
||
|
|
Cell[BoxData[
|
||
|
|
RowBox[{"Get", "[",
|
||
|
|
"\"\<https://raw.githubusercontent.com/szhorvat/IGraphM/master/IGInstaller.\
|
||
|
|
m\>\"", "]"}]], "Input",
|
||
|
|
CellChangeTimes->{{3.832151022612398*^9, 3.832151030465872*^9}, {
|
||
|
|
3.8321511379667025`*^9, 3.8321511785398226`*^9}, 3.832151627377406*^9},
|
||
|
|
CellLabel->"In[1]:=",ExpressionUUID->"db347c93-28af-46ae-97e4-0f025565b28b"],
|
||
|
|
|
||
|
|
Cell[BoxData[
|
||
|
|
InterpretationBox[
|
||
|
|
RowBox[{"\<\"The currently installed versions of IGraph/M are: \"\>",
|
||
|
|
"\[InvisibleSpace]",
|
||
|
|
RowBox[{"{", "\<\"0.5.1\"\>", "}"}]}],
|
||
|
|
SequenceForm[
|
||
|
|
"The currently installed versions of IGraph/M are: ", {"0.5.1"}],
|
||
|
|
Editable->False]], "Print",
|
||
|
|
CellChangeTimes->{3.832337217807197*^9, 3.832358883859474*^9},
|
||
|
|
CellLabel->
|
||
|
|
"During evaluation of \
|
||
|
|
In[1]:=",ExpressionUUID->"91a871f7-7ad4-4d9b-a238-89534a13d73b"],
|
||
|
|
|
||
|
|
Cell[BoxData[
|
||
|
|
TemplateBox[{
|
||
|
|
"System`PacletInstall", "samevers",
|
||
|
|
"\"A paclet named \\!\\(\\*RowBox[{\\\"\\\\\\\"IGraphM\\\\\\\"\\\"}]\\) \
|
||
|
|
with the same version number \
|
||
|
|
(\\!\\(\\*RowBox[{\\\"\\\\\\\"0.5.1\\\\\\\"\\\"}]\\)) is already installed. \
|
||
|
|
Use PacletUninstall to remove the existing version first, or call \
|
||
|
|
PacletInstall with ForceVersionInstall -> True.\"", 2, 1, 1,
|
||
|
|
26206974750047846679, "Local"},
|
||
|
|
"MessageTemplate"]], "Message", "MSG",
|
||
|
|
CellChangeTimes->{3.832337222565331*^9, 3.832358887306924*^9},
|
||
|
|
CellLabel->
|
||
|
|
"During evaluation of \
|
||
|
|
In[1]:=",ExpressionUUID->"1bd7e6c6-08bf-40e0-ada5-1b9c296f7ca2"],
|
||
|
|
|
||
|
|
Cell[BoxData[
|
||
|
|
InterpretationBox[
|
||
|
|
RowBox[{"\<\"Installation failed. Please install IGraph/M manually. \"\>",
|
||
|
|
"\[InvisibleSpace]",
|
||
|
|
TemplateBox[{
|
||
|
|
"\"https://github.com/szhorvat/IGraphM#installation\"",
|
||
|
|
"https://github.com/szhorvat/IGraphM#installation"},
|
||
|
|
"HyperlinkURL"]}],
|
||
|
|
SequenceForm["Installation failed. Please install IGraph/M manually. ",
|
||
|
|
Hyperlink["https://github.com/szhorvat/IGraphM#installation"]],
|
||
|
|
Editable->False]], "Print",
|
||
|
|
CellChangeTimes->{3.832337217807197*^9, 3.832358887315374*^9},
|
||
|
|
CellLabel->
|
||
|
|
"During evaluation of \
|
||
|
|
In[1]:=",ExpressionUUID->"ecde106e-abb1-4475-bcc8-474beba04d23"]
|
||
|
|
}, Open ]],
|
||
|
|
|
||
|
|
Cell[CellGroupData[{
|
||
|
|
|
||
|
|
Cell[BoxData[
|
||
|
|
RowBox[{"<<", "IGraphM`"}]], "Input",
|
||
|
|
CellChangeTimes->{{3.8321516420783434`*^9, 3.832151645302351*^9}},
|
||
|
|
CellLabel->"In[2]:=",ExpressionUUID->"8cc401a5-7736-45db-b864-33aa0faea5b6"],
|
||
|
|
|
||
|
|
Cell[BoxData[
|
||
|
|
TagBox[GridBox[{
|
||
|
|
{"\<\"IGraph/M 0.5.1 (October 12, 2020)\"\>"},
|
||
|
|
{"\<\"Evaluate \\!\\(\\*ButtonBox[\\\"IGDocumentation[]\\\",BaseStyle->\\\
|
||
|
|
\"Link\\\",ButtonData->\\\"paclet:IGraphM\\\"]\\) to get started.\"\>"}
|
||
|
|
},
|
||
|
|
DefaultBaseStyle->"Column",
|
||
|
|
GridBoxAlignment->{"Columns" -> {{Left}}},
|
||
|
|
GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}],
|
||
|
|
"Column"]], "Output",
|
||
|
|
CellChangeTimes->{3.832337477452114*^9, 3.832358888188767*^9},
|
||
|
|
CellLabel->"Out[2]=",ExpressionUUID->"2bca6177-8c17-477b-b102-0112c41c8522"]
|
||
|
|
}, Open ]],
|
||
|
|
|
||
|
|
Cell["\<\
|
||
|
|
Function to convert some representation of a graph to mathematica\
|
||
|
|
\[CloseCurlyQuote]s representation. You can give it the option \
|
||
|
|
`format->graph6` if in graph6 format\
|
||
|
|
\>", "Text",
|
||
|
|
CellChangeTimes->{{3.832358495397357*^9,
|
||
|
|
3.8323585393912582`*^9}},ExpressionUUID->"b79ac481-66e7-4669-b8f4-\
|
||
|
|
0cea700ed78c"],
|
||
|
|
|
||
|
|
Cell[BoxData[{
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"Clear", "[",
|
||
|
|
RowBox[{"format", ",", "edgeList", ",", "graph6"}], "]"}],
|
||
|
|
";"}], "\[IndentingNewLine]",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"Options", "[", "graphFromPlantri", "]"}], "=",
|
||
|
|
RowBox[{"{",
|
||
|
|
RowBox[{"format", "\[Rule]", "edgeList"}], "}"}]}],
|
||
|
|
";"}], "\[IndentingNewLine]",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"graphFromPlantri", "[",
|
||
|
|
RowBox[{"data_", ",",
|
||
|
|
RowBox[{"OptionsPattern", "[", "]"}]}], "]"}], ":=",
|
||
|
|
RowBox[{"If", "[",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"format", "===", "edgeList"}], ",",
|
||
|
|
RowBox[{"PlanarGraph", "[",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"Graph", "[",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"Partition", "[",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"ToExpression", "[",
|
||
|
|
RowBox[{"StringCases", "[",
|
||
|
|
RowBox[{"data", ",",
|
||
|
|
RowBox[{"DigitCharacter", ".."}]}], "]"}], "]"}], ",", "2"}],
|
||
|
|
"]"}], "/.",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"{",
|
||
|
|
RowBox[{"x_", ",", "y_"}], "}"}], "\[Rule]",
|
||
|
|
RowBox[{"(",
|
||
|
|
RowBox[{"x", "\[UndirectedEdge]", "y"}], ")"}]}]}], "]"}], ",",
|
||
|
|
RowBox[{"VertexLabels", "\[Rule]", "\"\<Name\>\""}]}], "]"}], ",",
|
||
|
|
"\[IndentingNewLine]",
|
||
|
|
RowBox[{"PlanarGraph", "[",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"ImportString", "[",
|
||
|
|
RowBox[{"data", ",", "\"\<Graph6\>\""}], "]"}], ",",
|
||
|
|
RowBox[{"VertexLabels", "\[Rule]", "\"\<Name\>\""}]}], "]"}]}],
|
||
|
|
"]"}]}]}], "Input",
|
||
|
|
CellChangeTimes->{{3.832336494011004*^9, 3.832336534340336*^9}, {
|
||
|
|
3.8323517999289827`*^9, 3.832351947441263*^9}, {3.8323520237090063`*^9,
|
||
|
|
3.8323520406687717`*^9}, {3.8323532427822723`*^9, 3.832353249640938*^9}},
|
||
|
|
CellLabel->"In[3]:=",ExpressionUUID->"0491d7dc-7152-49be-9137-070980e44ae7"],
|
||
|
|
|
||
|
|
Cell["\<\
|
||
|
|
Function to tell if a polyhedron is prime. About O(2^n) and not likely able \
|
||
|
|
to improve. There are about O(2^n) cycles (it\[CloseCurlyQuote]s been \
|
||
|
|
rigorously proven to be P-hard to count the number of cycles), and I don\
|
||
|
|
\[CloseCurlyQuote]t see a way of getting around that.\
|
||
|
|
\>", "Text",
|
||
|
|
CellChangeTimes->{{3.83235854587254*^9,
|
||
|
|
3.832358618254396*^9}},ExpressionUUID->"83ebdaf9-e7b9-4912-83aa-\
|
||
|
|
66018e3b4210"],
|
||
|
|
|
||
|
|
Cell[BoxData[
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"primePolyhedronQ", "[", "graph_", "]"}], ":=",
|
||
|
|
RowBox[{"Block", "[",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"{",
|
||
|
|
RowBox[{
|
||
|
|
"cycles", ",", "valid", ",", "faceDecomposable", ",",
|
||
|
|
"vertexDecomposable", ",", "dualGraph"}], "}"}], ",",
|
||
|
|
"\[IndentingNewLine]",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"cycles", "=",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"FindCycle", "[",
|
||
|
|
RowBox[{"graph", ",", "Infinity", ",", "All"}], "]"}], "/.",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"(",
|
||
|
|
RowBox[{"x_", "\[UndirectedEdge]", "y_"}], ")"}], "\[Rule]",
|
||
|
|
"x"}]}]}], ";", "\[IndentingNewLine]",
|
||
|
|
RowBox[{"valid", "=",
|
||
|
|
RowBox[{"Select", "[",
|
||
|
|
RowBox[{"cycles", ",",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"Not", "[",
|
||
|
|
RowBox[{"IGConnectedQ", "[",
|
||
|
|
RowBox[{"VertexDelete", "[",
|
||
|
|
RowBox[{"graph", ",", "#"}], "]"}], "]"}], "]"}], "&"}]}],
|
||
|
|
"]"}]}], ";", "\[IndentingNewLine]",
|
||
|
|
RowBox[{"faceDecomposable", "=",
|
||
|
|
RowBox[{"AnyTrue", "[",
|
||
|
|
RowBox[{"valid", ",",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"With", "[",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"{",
|
||
|
|
RowBox[{"components", "=",
|
||
|
|
RowBox[{"ConnectedComponents", "[",
|
||
|
|
RowBox[{"VertexDelete", "[",
|
||
|
|
RowBox[{"graph", ",", "#"}], "]"}], "]"}]}], "}"}], ",",
|
||
|
|
"\[IndentingNewLine]",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"KVertexConnectedGraphQ", "[",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"Subgraph", "[",
|
||
|
|
RowBox[{"graph", ",",
|
||
|
|
RowBox[{"Join", "[",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{
|
||
|
|
"components", "\[LeftDoubleBracket]", "1",
|
||
|
|
"\[RightDoubleBracket]"}], ",", "#"}], "]"}]}], "]"}], ",",
|
||
|
|
"3"}], "]"}], "&&",
|
||
|
|
RowBox[{"KVertexConnectedGraphQ", "[",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"Subgraph", "[",
|
||
|
|
RowBox[{"graph", ",",
|
||
|
|
RowBox[{"Join", "[",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{
|
||
|
|
"components", "\[LeftDoubleBracket]", "2",
|
||
|
|
"\[RightDoubleBracket]"}], ",", "#"}], "]"}]}], "]"}], ",",
|
||
|
|
"3"}], "]"}]}]}], "]"}], "&"}]}], "]"}]}], ";",
|
||
|
|
"\[IndentingNewLine]",
|
||
|
|
RowBox[{"If", "[",
|
||
|
|
RowBox[{"faceDecomposable", ",",
|
||
|
|
RowBox[{"Return", "[", "False", "]"}]}], "]"}], ";",
|
||
|
|
"\[IndentingNewLine]",
|
||
|
|
RowBox[{"dualGraph", "=",
|
||
|
|
RowBox[{"IGDualGraph", "[", "graph", "]"}]}], ";",
|
||
|
|
"\[IndentingNewLine]",
|
||
|
|
RowBox[{"cycles", "=",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"FindCycle", "[",
|
||
|
|
RowBox[{"dualGraph", ",", "Infinity", ",", "All"}], "]"}], "/.",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"(",
|
||
|
|
RowBox[{"x_", "\[UndirectedEdge]", "y_"}], ")"}], "\[Rule]",
|
||
|
|
"x"}]}]}], ";", "\[IndentingNewLine]",
|
||
|
|
RowBox[{"valid", "=",
|
||
|
|
RowBox[{"Select", "[",
|
||
|
|
RowBox[{"cycles", ",",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"Not", "[",
|
||
|
|
RowBox[{"IGConnectedQ", "[",
|
||
|
|
RowBox[{"VertexDelete", "[",
|
||
|
|
RowBox[{"dualGraph", ",", "#"}], "]"}], "]"}], "]"}], "&"}]}],
|
||
|
|
"]"}]}], ";", "\[IndentingNewLine]",
|
||
|
|
RowBox[{"Not", "[",
|
||
|
|
RowBox[{"AnyTrue", "[",
|
||
|
|
RowBox[{"valid", ",",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"With", "[",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"{",
|
||
|
|
RowBox[{"components", "=",
|
||
|
|
RowBox[{"ConnectedComponents", "[",
|
||
|
|
RowBox[{"VertexDelete", "[",
|
||
|
|
RowBox[{"dualGraph", ",", "#"}], "]"}], "]"}]}], "}"}], ",",
|
||
|
|
"\[IndentingNewLine]",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"KVertexConnectedGraphQ", "[",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"Subgraph", "[",
|
||
|
|
RowBox[{"dualGraph", ",",
|
||
|
|
RowBox[{"Join", "[",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{
|
||
|
|
"components", "\[LeftDoubleBracket]", "1",
|
||
|
|
"\[RightDoubleBracket]"}], ",", "#"}], "]"}]}], "]"}], ",",
|
||
|
|
"3"}], "]"}], "&&",
|
||
|
|
RowBox[{"KVertexConnectedGraphQ", "[",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"Subgraph", "[",
|
||
|
|
RowBox[{"dualGraph", ",",
|
||
|
|
RowBox[{"Join", "[",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{
|
||
|
|
"components", "\[LeftDoubleBracket]", "2",
|
||
|
|
"\[RightDoubleBracket]"}], ",", "#"}], "]"}]}], "]"}], ",",
|
||
|
|
"3"}], "]"}]}]}], "]"}], "&"}]}], "]"}], "]"}]}]}],
|
||
|
|
"\[IndentingNewLine]", "]"}]}]], "Input",
|
||
|
|
CellChangeTimes->{{3.8323514934530973`*^9, 3.832351646852213*^9}, {
|
||
|
|
3.8323516804671373`*^9, 3.83235168336065*^9}},
|
||
|
|
CellLabel->"In[6]:=",ExpressionUUID->"1445a032-9806-4ee7-8079-9849d6ac9896"],
|
||
|
|
|
||
|
|
Cell["\<\
|
||
|
|
Function to find the possible decompositions of a graph. Returns a list where \
|
||
|
|
the first element of the list is the number of possible face decompositions \
|
||
|
|
and the second is the number of possible vertex decompositions. Should be \
|
||
|
|
easy to modify to actually return the decompositions. I wonder if we could \
|
||
|
|
extend this recursively to \[OpenCurlyDoubleQuote]prime factorize\
|
||
|
|
\[CloseCurlyDoubleQuote] polyhedra?\
|
||
|
|
\>", "Text",
|
||
|
|
CellChangeTimes->{{3.832358623451818*^9,
|
||
|
|
3.832358720650798*^9}},ExpressionUUID->"a601bc96-4656-4520-9aeb-\
|
||
|
|
158895d9368a"],
|
||
|
|
|
||
|
|
Cell[BoxData[
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"decomposable", "[", "graph_", "]"}], ":=",
|
||
|
|
RowBox[{"Block", "[",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"{",
|
||
|
|
RowBox[{
|
||
|
|
"cycles", ",", "valid", ",", "faceDecomposable", ",",
|
||
|
|
"vertexDecomposable", ",", "dualGraph"}], "}"}], ",",
|
||
|
|
"\[IndentingNewLine]",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"cycles", "=",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"FindCycle", "[",
|
||
|
|
RowBox[{"graph", ",", "Infinity", ",", "All"}], "]"}], "/.",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"(",
|
||
|
|
RowBox[{"x_", "\[UndirectedEdge]", "y_"}], ")"}], "\[Rule]",
|
||
|
|
"x"}]}]}], ";", "\[IndentingNewLine]",
|
||
|
|
RowBox[{"valid", "=",
|
||
|
|
RowBox[{"Select", "[",
|
||
|
|
RowBox[{"cycles", ",",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"Not", "[",
|
||
|
|
RowBox[{"IGConnectedQ", "[",
|
||
|
|
RowBox[{"VertexDelete", "[",
|
||
|
|
RowBox[{"graph", ",", "#"}], "]"}], "]"}], "]"}], "&"}]}],
|
||
|
|
"]"}]}], ";", "\[IndentingNewLine]",
|
||
|
|
RowBox[{"faceDecomposable", "=",
|
||
|
|
RowBox[{"Length", "[",
|
||
|
|
RowBox[{"Select", "[",
|
||
|
|
RowBox[{"valid", ",",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"With", "[",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"{",
|
||
|
|
RowBox[{"components", "=",
|
||
|
|
RowBox[{"ConnectedComponents", "[",
|
||
|
|
RowBox[{"VertexDelete", "[",
|
||
|
|
RowBox[{"graph", ",", "#"}], "]"}], "]"}]}], "}"}], ",",
|
||
|
|
"\[IndentingNewLine]",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"KVertexConnectedGraphQ", "[",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"Subgraph", "[",
|
||
|
|
RowBox[{"graph", ",",
|
||
|
|
RowBox[{"Join", "[",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{
|
||
|
|
"components", "\[LeftDoubleBracket]", "1",
|
||
|
|
"\[RightDoubleBracket]"}], ",", "#"}], "]"}]}], "]"}],
|
||
|
|
",", "3"}], "]"}], "&&",
|
||
|
|
RowBox[{"KVertexConnectedGraphQ", "[",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"Subgraph", "[",
|
||
|
|
RowBox[{"graph", ",",
|
||
|
|
RowBox[{"Join", "[",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{
|
||
|
|
"components", "\[LeftDoubleBracket]", "2",
|
||
|
|
"\[RightDoubleBracket]"}], ",", "#"}], "]"}]}], "]"}],
|
||
|
|
",", "3"}], "]"}]}]}], "]"}], "&"}]}], "]"}], "]"}]}], ";",
|
||
|
|
"\[IndentingNewLine]",
|
||
|
|
RowBox[{"dualGraph", "=",
|
||
|
|
RowBox[{"IGDualGraph", "[", "graph", "]"}]}], ";",
|
||
|
|
"\[IndentingNewLine]",
|
||
|
|
RowBox[{"cycles", "=",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"FindCycle", "[",
|
||
|
|
RowBox[{"dualGraph", ",", "Infinity", ",", "All"}], "]"}], "/.",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"(",
|
||
|
|
RowBox[{"x_", "\[UndirectedEdge]", "y_"}], ")"}], "\[Rule]",
|
||
|
|
"x"}]}]}], ";", "\[IndentingNewLine]",
|
||
|
|
RowBox[{"valid", "=",
|
||
|
|
RowBox[{"Select", "[",
|
||
|
|
RowBox[{"cycles", ",",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"Not", "[",
|
||
|
|
RowBox[{"IGConnectedQ", "[",
|
||
|
|
RowBox[{"VertexDelete", "[",
|
||
|
|
RowBox[{"dualGraph", ",", "#"}], "]"}], "]"}], "]"}], "&"}]}],
|
||
|
|
"]"}]}], ";", "\[IndentingNewLine]",
|
||
|
|
RowBox[{"vertexDecomposable", "=",
|
||
|
|
RowBox[{"Length", "[",
|
||
|
|
RowBox[{"Select", "[",
|
||
|
|
RowBox[{"valid", ",",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"With", "[",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"{",
|
||
|
|
RowBox[{"components", "=",
|
||
|
|
RowBox[{"ConnectedComponents", "[",
|
||
|
|
RowBox[{"VertexDelete", "[",
|
||
|
|
RowBox[{"dualGraph", ",", "#"}], "]"}], "]"}]}], "}"}], ",",
|
||
|
|
"\[IndentingNewLine]",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"KVertexConnectedGraphQ", "[",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"Subgraph", "[",
|
||
|
|
RowBox[{"dualGraph", ",",
|
||
|
|
RowBox[{"Join", "[",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{
|
||
|
|
"components", "\[LeftDoubleBracket]", "1",
|
||
|
|
"\[RightDoubleBracket]"}], ",", "#"}], "]"}]}], "]"}],
|
||
|
|
",", "3"}], "]"}], "&&",
|
||
|
|
RowBox[{"KVertexConnectedGraphQ", "[",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"Subgraph", "[",
|
||
|
|
RowBox[{"dualGraph", ",",
|
||
|
|
RowBox[{"Join", "[",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{
|
||
|
|
"components", "\[LeftDoubleBracket]", "2",
|
||
|
|
"\[RightDoubleBracket]"}], ",", "#"}], "]"}]}], "]"}],
|
||
|
|
",", "3"}], "]"}]}]}], "]"}], "&"}]}], "]"}], "]"}]}], ";",
|
||
|
|
"\[IndentingNewLine]",
|
||
|
|
RowBox[{"{",
|
||
|
|
RowBox[{"faceDecomposable", ",", "vertexDecomposable"}], "}"}]}]}],
|
||
|
|
"\[IndentingNewLine]", "]"}]}]], "Input",
|
||
|
|
CellChangeTimes->{{3.832340233432548*^9, 3.832340427782093*^9}, {
|
||
|
|
3.8323404633434258`*^9, 3.832340465470111*^9}, {3.832341064134386*^9,
|
||
|
|
3.832341105249135*^9}, {3.832341215107959*^9, 3.832341309459516*^9}, {
|
||
|
|
3.83234151306717*^9, 3.8323415312540283`*^9}},
|
||
|
|
CellLabel->"In[7]:=",ExpressionUUID->"58712807-a428-4b89-8b30-be4ce33480f8"],
|
||
|
|
|
||
|
|
Cell["\<\
|
||
|
|
Function to read data from a file and convert it into a list of graphs. The \
|
||
|
|
easiest way to use this is to download a massive list from plantri (in graph6 \
|
||
|
|
format if it is very large, to keep the file small), and give that filename \
|
||
|
|
here. I highly recommend you put a semicolon at the end of that line to \
|
||
|
|
suppress the output; it tends to be pretty massive.\
|
||
|
|
\>", "Text",
|
||
|
|
CellChangeTimes->{{3.832358728187701*^9, 3.832358787855624*^9}, {
|
||
|
|
3.832358819591075*^9,
|
||
|
|
3.8323588520926237`*^9}},ExpressionUUID->"ab257888-085b-4fde-8617-\
|
||
|
|
8abd299bbd66"],
|
||
|
|
|
||
|
|
Cell[BoxData[
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"readData", "[", "filename_", "]"}], ":=",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"graphFromPlantri", "[",
|
||
|
|
RowBox[{"#", ",",
|
||
|
|
RowBox[{"format", "\[Rule]", "graph6"}]}], "]"}], "&"}], "/@",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"Flatten", "[",
|
||
|
|
RowBox[{"StringSplit", "[",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"ReadList", "[",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"FileNameJoin", "[",
|
||
|
|
RowBox[{"{",
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"NotebookDirectory", "[", "]"}], ",", "filename"}], "}"}],
|
||
|
|
"]"}], ",", "String"}], "]"}], ",", "\"\<: \>\""}], "]"}], "]"}],
|
||
|
|
"\[LeftDoubleBracket]",
|
||
|
|
RowBox[{"2", ";;",
|
||
|
|
RowBox[{"-", "1"}], ";;", "2"}], "\[RightDoubleBracket]"}]}]}]], "Input",\
|
||
|
|
|
||
|
|
CellChangeTimes->{{3.8323510610419703`*^9, 3.832351096305499*^9}, {
|
||
|
|
3.832351132436808*^9, 3.832351163544671*^9}, {3.8323520703052*^9,
|
||
|
|
3.832352099080572*^9}, 3.832353009185463*^9, {3.832353208418548*^9,
|
||
|
|
3.832353211320695*^9}, {3.8323532635110197`*^9, 3.832353268104516*^9},
|
||
|
|
3.832358834504381*^9},
|
||
|
|
CellLabel->"In[8]:=",ExpressionUUID->"c0281df0-ade3-4fd2-99f7-1a53b1d66fa0"],
|
||
|
|
|
||
|
|
Cell[BoxData[
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"seven", "=",
|
||
|
|
RowBox[{"readData", "[", "\"\<seven.txt\>\"", "]"}]}], ";"}]], "Input",
|
||
|
|
CellChangeTimes->{{3.8323588567164307`*^9, 3.8323588616686373`*^9}},
|
||
|
|
CellLabel->"In[9]:=",ExpressionUUID->"2f37be41-b92f-40b8-95c3-35b1428bea5c"],
|
||
|
|
|
||
|
|
Cell[CellGroupData[{
|
||
|
|
|
||
|
|
Cell[BoxData[
|
||
|
|
RowBox[{"Select", "[",
|
||
|
|
RowBox[{"seven", ",", "primePolyhedronQ"}], "]"}]], "Input",
|
||
|
|
CellChangeTimes->{{3.832358871642627*^9, 3.8323588768733664`*^9}},
|
||
|
|
CellLabel->"In[10]:=",ExpressionUUID->"29f7a6e5-dd5a-4186-8140-359fe21550df"],
|
||
|
|
|
||
|
|
Cell[BoxData[
|
||
|
|
RowBox[{"{",
|
||
|
|
RowBox[{
|
||
|
|
GraphicsBox[
|
||
|
|
NamespaceBox["NetworkGraphics",
|
||
|
|
DynamicModuleBox[{Typeset`graph = HoldComplete[
|
||
|
|
Graph[{1, 2, 3, 4, 5, 6, 7}, {
|
||
|
|
Null, {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 6}, {3, 4}, {3,
|
||
|
|
6}, {4, 5}, {4, 7}, {5, 7}, {6, 7}}}, {
|
||
|
|
GraphLayout -> "TutteEmbedding", VertexLabels -> {"Name"}}]]},
|
||
|
|
TagBox[GraphicsGroupBox[{
|
||
|
|
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
|
||
|
|
ArrowBox[CompressedData["
|
||
|
|
1:eJxTTMoPSmVmYGDgAWImKObqmudjWblqDwMYfLD/H+IizJf/zj7wpb75+2OX
|
||
|
|
7dHlt/2W/la36bI9SG9A6FEM+UM3Qs9VbLq8/9////+DscgzhILN3+8NNR/d
|
||
|
|
PnTz0eXjokpZlM8/sl/+Zfrs8scv96OrR7cfXR5dP7p6dPehy8dC9O9fCdWP
|
||
|
|
rh5dHt0+dHkAFYHA2A==
|
||
|
|
"], 0.021812234931106983`]},
|
||
|
|
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
|
||
|
|
0.7]}], {
|
||
|
|
DiskBox[{-1.8369701987210297*^-16, 1.}, 0.021812234931106983],
|
||
|
|
InsetBox["1",
|
||
|
|
Offset[{2, 2}, {0.0218122349311068, 1.021812234931107}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{0.9510565162951535, 0.3090169943749475},
|
||
|
|
0.021812234931106983],
|
||
|
|
InsetBox["2",
|
||
|
|
Offset[{2, 2}, {0.9728687512262605, 0.3308292293060545}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{0.3077695277606226, 0.16666603088378912},
|
||
|
|
0.021812234931106983],
|
||
|
|
InsetBox["3",
|
||
|
|
Offset[{2, 2}, {0.32958176269172956, 0.1884782658148961}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{-0.30776806020675107, 0.1666665077209472},
|
||
|
|
0.021812234931106983],
|
||
|
|
InsetBox["4",
|
||
|
|
Offset[{2, 2}, {-0.2859558252756441, 0.1884787426520542}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{-0.9510565162951536, 0.3090169943749472},
|
||
|
|
0.021812234931106983],
|
||
|
|
InsetBox["5",
|
||
|
|
Offset[{2, 2}, {-0.9292442813640467, 0.3308292293060542}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{0.5877852522924731, -0.8090169943749473},
|
||
|
|
0.021812234931106983],
|
||
|
|
InsetBox["6",
|
||
|
|
Offset[{2, 2}, {0.6095974872235801, -0.7872047594438404}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{-0.587785252292473, -0.8090169943749476},
|
||
|
|
0.021812234931106983],
|
||
|
|
InsetBox["7",
|
||
|
|
Offset[{2, 2}, {-0.5659730173613661, -0.7872047594438406}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}}}],
|
||
|
|
MouseAppearanceTag["NetworkGraphics"]],
|
||
|
|
AllowKernelInitialization->False]],
|
||
|
|
DefaultBaseStyle->{
|
||
|
|
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
|
||
|
|
|
||
|
|
FormatType->TraditionalForm,
|
||
|
|
FrameTicks->None], ",",
|
||
|
|
GraphicsBox[
|
||
|
|
NamespaceBox["NetworkGraphics",
|
||
|
|
DynamicModuleBox[{Typeset`graph = HoldComplete[
|
||
|
|
Graph[{1, 2, 3, 4, 5, 6, 7}, {
|
||
|
|
Null, {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 6}, {2, 7}, {3, 4}, {3,
|
||
|
|
7}, {4, 5}, {4, 7}, {5, 6}, {6, 7}}}, {
|
||
|
|
GraphLayout -> "TutteEmbedding", VertexLabels -> {"Name"}}]]},
|
||
|
|
TagBox[GraphicsGroupBox[{
|
||
|
|
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
|
||
|
|
ArrowBox[CompressedData["
|
||
|
|
1:eJxTTMoPSmVmYGDgAWImKObqmudjWblqDwMYfLCH0ewxIsZqyxba4JDfD5Hf
|
||
|
|
uAddnuVc25GJT8/tPzohMOPY8o326PIuvJVX+5cvtOcSnfdy9/KLGPb1Jlj9
|
||
|
|
Wyp4zX7xnGk7m4DmoMtD6Ik2MHeguwfdfnR5dP3o6tHdhy6Prh9dPbr70fno
|
||
|
|
+gF/Cpa6
|
||
|
|
"], 0.02261146496815286]},
|
||
|
|
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
|
||
|
|
0.7]}], {
|
||
|
|
DiskBox[{-1.8369701987210297*^-16, 1.}, 0.02261146496815286],
|
||
|
|
InsetBox["1",
|
||
|
|
Offset[{2, 2}, {0.022611464968152677, 1.0226114649681528}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{1., 1.2246467991473532*^-16}, 0.02261146496815286],
|
||
|
|
InsetBox["2",
|
||
|
|
Offset[{2, 2}, {1.0226114649681528, 0.022611464968152983}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{-1., -2.4492935982947064*^-16}, 0.02261146496815286],
|
||
|
|
InsetBox["3",
|
||
|
|
Offset[{2, 2}, {-0.9773885350318472, 0.022611464968152615}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{-0.24138090225243058, 0.06896629378167336},
|
||
|
|
0.02261146496815286],
|
||
|
|
InsetBox["4",
|
||
|
|
Offset[{2, 2}, {-0.21876943728427772, 0.09157775874982622}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{0.034481520470331734, 0.2758626729413015},
|
||
|
|
0.02261146496815286],
|
||
|
|
InsetBox["5",
|
||
|
|
Offset[{2, 2}, {0.057092985438484595, 0.2984741379094544}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{0.34482717349011055, -0.24137910901956613},
|
||
|
|
0.02261146496815286],
|
||
|
|
InsetBox["6",
|
||
|
|
Offset[{2, 2}, {0.3674386384582634, -0.21876764405141327}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{6.123233995736766*^-17, -1.}, 0.02261146496815286],
|
||
|
|
InsetBox["7",
|
||
|
|
Offset[{2, 2}, {0.022611464968152924, -0.9773885350318472}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}}}],
|
||
|
|
MouseAppearanceTag["NetworkGraphics"]],
|
||
|
|
AllowKernelInitialization->False]],
|
||
|
|
DefaultBaseStyle->{
|
||
|
|
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
|
||
|
|
|
||
|
|
FormatType->TraditionalForm,
|
||
|
|
FrameTicks->None], ",",
|
||
|
|
GraphicsBox[
|
||
|
|
NamespaceBox["NetworkGraphics",
|
||
|
|
DynamicModuleBox[{Typeset`graph = HoldComplete[
|
||
|
|
Graph[{1, 2, 3, 4, 5, 6, 7}, {
|
||
|
|
Null, {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 6}, {2, 7}, {3, 4}, {3,
|
||
|
|
7}, {4, 5}, {5, 6}, {5, 7}, {6, 7}}}, {
|
||
|
|
GraphLayout -> "TutteEmbedding", VertexLabels -> {"Name"}}]]},
|
||
|
|
TagBox[GraphicsGroupBox[{
|
||
|
|
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
|
||
|
|
ArrowBox[CompressedData["
|
||
|
|
1:eJxTTMoPSmVmYGDgAWImKObqmudjWblqDwMYfLCH0ewxIsZqyxba4JDfD5Hf
|
||
|
|
uAdd/vpUhsCU0Kv7L0Noe0z9zI1h3/fuY2D43wCk7dDtey3Pdy0IqO8VhN6P
|
||
|
|
Lg+hJ9rA3IHuHnT70eXR9WOqR3cfKh/Tfajy6Oajq0eXBwB5gYdE
|
||
|
|
"],
|
||
|
|
0.02261146496815286]},
|
||
|
|
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
|
||
|
|
0.7]}], {
|
||
|
|
DiskBox[{-1.8369701987210297*^-16, 1.}, 0.02261146496815286],
|
||
|
|
InsetBox["1",
|
||
|
|
Offset[{2, 2}, {0.022611464968152677, 1.0226114649681528}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{1., 1.2246467991473532*^-16}, 0.02261146496815286],
|
||
|
|
InsetBox["2",
|
||
|
|
Offset[{2, 2}, {1.0226114649681528, 0.022611464968152983}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{-1., -2.4492935982947064*^-16}, 0.02261146496815286],
|
||
|
|
InsetBox["3",
|
||
|
|
Offset[{2, 2}, {-0.9773885350318472, 0.022611464968152615}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{-0.33333690557841805, 0.33333690557841783},
|
||
|
|
0.02261146496815286],
|
||
|
|
InsetBox["4",
|
||
|
|
Offset[{2, 2}, {-0.3107254406102652, 0.3559483705465707}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{-1.7861225423548843*^-6, 1.7861225422993732*^-6},
|
||
|
|
0.02261146496815286],
|
||
|
|
InsetBox["5",
|
||
|
|
Offset[{2, 2}, {0.022609678845610506, 0.02261325109069516}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{0.3333327379591526, -0.3333327379591525},
|
||
|
|
0.02261146496815286],
|
||
|
|
InsetBox["6",
|
||
|
|
Offset[{2, 2}, {0.35594420292730544, -0.31072127299099966}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{6.123233995736766*^-17, -1.}, 0.02261146496815286],
|
||
|
|
InsetBox["7",
|
||
|
|
Offset[{2, 2}, {0.022611464968152924, -0.9773885350318472}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}}}],
|
||
|
|
MouseAppearanceTag["NetworkGraphics"]],
|
||
|
|
AllowKernelInitialization->False]],
|
||
|
|
DefaultBaseStyle->{
|
||
|
|
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
|
||
|
|
|
||
|
|
FormatType->TraditionalForm,
|
||
|
|
FrameTicks->None], ",",
|
||
|
|
GraphicsBox[
|
||
|
|
NamespaceBox["NetworkGraphics",
|
||
|
|
DynamicModuleBox[{Typeset`graph = HoldComplete[
|
||
|
|
Graph[{1, 2, 3, 4, 5, 6, 7}, {
|
||
|
|
Null, {{1, 2}, {1, 3}, {1, 4}, {2, 5}, {2, 6}, {3, 6}, {3, 7}, {4,
|
||
|
|
5}, {4, 6}, {4, 7}, {5, 6}, {6, 7}}}, {
|
||
|
|
GraphLayout -> "TutteEmbedding", VertexLabels -> {"Name"}}]]},
|
||
|
|
TagBox[GraphicsGroupBox[{
|
||
|
|
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
|
||
|
|
ArrowBox[CompressedData["
|
||
|
|
1:eJxTTMoPSmVmYGDgAWImKObqmudjWblqDwMYfLCH0ewxIsZqyxba4JDfD5Hf
|
||
|
|
uAe7fMOejBn/FpfOPLkf3bxQMLhqnyoZOnvyzJsY8hB6og3MHnT7CMlDzd+f
|
||
|
|
gWI+wj3Y7UfIYzcfQz/cfHTz0PWj89H1AwDKNoLv
|
||
|
|
"], 0.02261146496815286]},
|
||
|
|
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
|
||
|
|
0.7]}], {
|
||
|
|
DiskBox[{-1.8369701987210297*^-16, 1.}, 0.02261146496815286],
|
||
|
|
InsetBox["1",
|
||
|
|
Offset[{2, 2}, {0.022611464968152677, 1.0226114649681528}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{1., 1.2246467991473532*^-16}, 0.02261146496815286],
|
||
|
|
InsetBox["2",
|
||
|
|
Offset[{2, 2}, {1.0226114649681528, 0.022611464968152983}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{-1., -2.4492935982947064*^-16}, 0.02261146496815286],
|
||
|
|
InsetBox["3",
|
||
|
|
Offset[{2, 2}, {-0.9773885350318472, 0.022611464968152615}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{-2.7755575615628914*^-17, -0.1999957133058985},
|
||
|
|
0.02261146496815286],
|
||
|
|
InsetBox["4",
|
||
|
|
Offset[{2, 2}, {0.022611464968152833, -0.17738424833774563}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{0.3333333333333333, -0.39999857110196607},
|
||
|
|
0.02261146496815286],
|
||
|
|
InsetBox["5",
|
||
|
|
Offset[{2, 2}, {0.3559447983014862, -0.3773871061338132}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{6.123233995736766*^-17, -1.}, 0.02261146496815286],
|
||
|
|
InsetBox["6",
|
||
|
|
Offset[{2, 2}, {0.022611464968152924, -0.9773885350318472}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{-0.3333333333333333, -0.39999857110196624},
|
||
|
|
0.02261146496815286],
|
||
|
|
InsetBox["7",
|
||
|
|
Offset[{2, 2}, {-0.31072186836518045, -0.3773871061338134}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}}}],
|
||
|
|
MouseAppearanceTag["NetworkGraphics"]],
|
||
|
|
AllowKernelInitialization->False]],
|
||
|
|
DefaultBaseStyle->{
|
||
|
|
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
|
||
|
|
|
||
|
|
FormatType->TraditionalForm,
|
||
|
|
FrameTicks->None], ",",
|
||
|
|
GraphicsBox[
|
||
|
|
NamespaceBox["NetworkGraphics",
|
||
|
|
DynamicModuleBox[{Typeset`graph = HoldComplete[
|
||
|
|
Graph[{1, 2, 3, 4, 5, 6, 7}, {
|
||
|
|
Null, {{1, 2}, {1, 3}, {1, 4}, {2, 4}, {2, 5}, {3, 4}, {3, 6}, {4,
|
||
|
|
5}, {4, 6}, {4, 7}, {5, 7}, {6, 7}}}, {
|
||
|
|
GraphLayout -> "TutteEmbedding", VertexLabels -> {"Name"}}]]},
|
||
|
|
TagBox[GraphicsGroupBox[{
|
||
|
|
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
|
||
|
|
ArrowBox[CompressedData["
|
||
|
|
1:eJxTTMoPSmVmYGDgAWImKObqmudjWblqDwMYfLBf5RPxomrba3tmMP+BPbr8
|
||
|
|
Ooj8/s//QeA+hjyEnrBn9SoQmLUH3TxC8quh/N8Q8/ej24euH11+JZTPAjFv
|
||
|
|
P7p6dPPR5QnpZ48RMVZbNtEG6t/96Oahy6Obhy4PAL4esZc=
|
||
|
|
"],
|
||
|
|
0.02261146496815286]},
|
||
|
|
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
|
||
|
|
0.7]}], {
|
||
|
|
DiskBox[{-1.8369701987210297*^-16, 1.}, 0.02261146496815286],
|
||
|
|
InsetBox["1",
|
||
|
|
Offset[{2, 2}, {0.022611464968152677, 1.0226114649681528}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{0.8660254037844386, 0.5000000000000003},
|
||
|
|
0.02261146496815286],
|
||
|
|
InsetBox["2",
|
||
|
|
Offset[{2, 2}, {0.8886368687525914, 0.5226114649681532}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{-0.866025403784439, 0.4999999999999993},
|
||
|
|
0.02261146496815286],
|
||
|
|
InsetBox["3",
|
||
|
|
Offset[{2, 2}, {-0.8434139388162862, 0.5226114649681521}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{-5.551115123125783*^-17, -9.251858538542972*^-17},
|
||
|
|
0.02261146496815286],
|
||
|
|
InsetBox["4",
|
||
|
|
Offset[{2, 2}, {0.022611464968152806, 0.022611464968152768}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{0.8660254037844387, -0.4999999999999997},
|
||
|
|
0.02261146496815286],
|
||
|
|
InsetBox["5", Offset[{2, 2}, {0.8886368687525916, -0.47738853503184686}]
|
||
|
|
, ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{-0.8660254037844385, -0.5000000000000004},
|
||
|
|
0.02261146496815286],
|
||
|
|
InsetBox["6",
|
||
|
|
Offset[{2, 2}, {-0.8434139388162856, -0.4773885350318476}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{6.123233995736766*^-17, -1.}, 0.02261146496815286],
|
||
|
|
InsetBox["7",
|
||
|
|
Offset[{2, 2}, {0.022611464968152924, -0.9773885350318472}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}}}],
|
||
|
|
MouseAppearanceTag["NetworkGraphics"]],
|
||
|
|
AllowKernelInitialization->False]],
|
||
|
|
DefaultBaseStyle->{
|
||
|
|
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
|
||
|
|
|
||
|
|
FormatType->TraditionalForm,
|
||
|
|
FrameTicks->None], ",",
|
||
|
|
GraphicsBox[
|
||
|
|
NamespaceBox["NetworkGraphics",
|
||
|
|
DynamicModuleBox[{Typeset`graph = HoldComplete[
|
||
|
|
Graph[{1, 2, 3, 4, 5, 6, 7}, {
|
||
|
|
Null, {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {2, 3}, {2, 6}, {3,
|
||
|
|
7}, {4, 5}, {4, 7}, {5, 6}, {5, 7}}}, {
|
||
|
|
GraphLayout -> "TutteEmbedding", VertexLabels -> {"Name"}}]]},
|
||
|
|
TagBox[GraphicsGroupBox[{
|
||
|
|
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
|
||
|
|
ArrowBox[CompressedData["
|
||
|
|
1:eJxTTMoPSmVmYGDgAWImKG5jeWXoKH9gfzdre13LtLX2XF3zfCwrV+1hAIMP
|
||
|
|
9ujy/0NchPny39kHvtQ3f3/sMob86g2PpjPWL92/ovaQf9OSB/vR5WOjSlmU
|
||
|
|
zz/av/LL9Nnlj19iyDOEgs3f7w01H9096Pajy6PrR1cfB7HffjnUfnT3orsP
|
||
|
|
XR5dP7p6dPvR5dH1AwCZZ78f
|
||
|
|
"], 0.021812234931106983`]},
|
||
|
|
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
|
||
|
|
0.7]}], {
|
||
|
|
DiskBox[{-0.12595381676877454, 0.057788982815973965},
|
||
|
|
0.021812234931106983],
|
||
|
|
InsetBox["1",
|
||
|
|
Offset[{2, 2}, {-0.10414158183766756, 0.07960121774708095}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{-1.8369701987210297*^-16, 1.}, 0.021812234931106983],
|
||
|
|
InsetBox["2",
|
||
|
|
Offset[{2, 2}, {0.0218122349311068, 1.021812234931107}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{0.9510565162951535, 0.3090169943749475},
|
||
|
|
0.021812234931106983],
|
||
|
|
InsetBox["3",
|
||
|
|
Offset[{2, 2}, {0.9728687512262605, 0.3308292293060545}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{-0.04198460558959146, -0.5200816686446403},
|
||
|
|
0.021812234931106983],
|
||
|
|
InsetBox["4",
|
||
|
|
Offset[{2, 2}, {-0.020172370658484477, -0.4982694337135334}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{-0.587785252292473, -0.8090169943749476},
|
||
|
|
0.021812234931106983],
|
||
|
|
InsetBox["5",
|
||
|
|
Offset[{2, 2}, {-0.5659730173613661, -0.7872047594438406}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{-0.9510565162951536, 0.3090169943749472},
|
||
|
|
0.021812234931106983],
|
||
|
|
InsetBox["6",
|
||
|
|
Offset[{2, 2}, {-0.9292442813640467, 0.3308292293060542}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{0.5877852522924731, -0.8090169943749473},
|
||
|
|
0.021812234931106983],
|
||
|
|
InsetBox["7",
|
||
|
|
Offset[{2, 2}, {0.6095974872235801, -0.7872047594438404}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}}}],
|
||
|
|
MouseAppearanceTag["NetworkGraphics"]],
|
||
|
|
AllowKernelInitialization->False]],
|
||
|
|
DefaultBaseStyle->{
|
||
|
|
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
|
||
|
|
|
||
|
|
FormatType->TraditionalForm,
|
||
|
|
FrameTicks->None], ",",
|
||
|
|
GraphicsBox[
|
||
|
|
NamespaceBox["NetworkGraphics",
|
||
|
|
DynamicModuleBox[{Typeset`graph = HoldComplete[
|
||
|
|
Graph[{1, 2, 3, 4, 5, 6, 7}, {
|
||
|
|
Null, {{1, 2}, {1, 3}, {1, 4}, {2, 5}, {2, 6}, {3, 6}, {3, 7}, {4,
|
||
|
|
5}, {4, 7}, {5, 6}, {5, 7}, {6, 7}}}, {
|
||
|
|
GraphLayout -> "TutteEmbedding", VertexLabels -> {"Name"}}]]},
|
||
|
|
TagBox[GraphicsGroupBox[{
|
||
|
|
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
|
||
|
|
ArrowBox[CompressedData["
|
||
|
|
1:eJxTTMoPSmVmYGDgAWImKObqmudjWblqDwMYfLCH0ewxIsZqyxba4JDfD5Hf
|
||
|
|
uAddPjSUf77x1j12CezJYVGehzDMU1rwY87CmSftF7uHTBD1vLQfXR5CT7SB
|
||
|
|
2YNuHyF5kRRppikzT+7/t8FDUgpoPrp70O1Hl0fXj64e3X50eXT96OrR5QFH
|
||
|
|
EYiS
|
||
|
|
"], 0.02261146496815286]},
|
||
|
|
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
|
||
|
|
0.7]}], {
|
||
|
|
DiskBox[{-1.8369701987210297*^-16, 1.}, 0.02261146496815286],
|
||
|
|
InsetBox["1",
|
||
|
|
Offset[{2, 2}, {0.022611464968152677, 1.0226114649681528}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{1., 1.2246467991473532*^-16}, 0.02261146496815286],
|
||
|
|
InsetBox["2",
|
||
|
|
Offset[{2, 2}, {1.0226114649681528, 0.022611464968152983}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{-1., -2.4492935982947064*^-16}, 0.02261146496815286],
|
||
|
|
InsetBox["3",
|
||
|
|
Offset[{2, 2}, {-0.9773885350318472, 0.022611464968152615}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{1.711119349536346*^-6, 0.14286355226618763},
|
||
|
|
0.02261146496815286],
|
||
|
|
InsetBox["4",
|
||
|
|
Offset[{2, 2}, {0.022613176087502396, 0.1654750172343405}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{0.20000095524415068, -0.2857107076134701},
|
||
|
|
0.02261146496815286],
|
||
|
|
InsetBox["5",
|
||
|
|
Offset[{2, 2}, {0.22261242021230354, -0.26309924264531726}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{6.123233995736766*^-17, -1.}, 0.02261146496815286],
|
||
|
|
InsetBox["6",
|
||
|
|
Offset[{2, 2}, {0.022611464968152924, -0.9773885350318472}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}, {
|
||
|
|
DiskBox[{-0.1999993334091249, -0.2857117888368207},
|
||
|
|
0.02261146496815286],
|
||
|
|
InsetBox["7",
|
||
|
|
Offset[{2, 2}, {-0.17738786844097204, -0.26310032386866783}],
|
||
|
|
ImageScaled[{0, 0}],
|
||
|
|
BaseStyle->"Graphics"]}}}],
|
||
|
|
MouseAppearanceTag["NetworkGraphics"]],
|
||
|
|
AllowKernelInitialization->False]],
|
||
|
|
DefaultBaseStyle->{
|
||
|
|
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
|
||
|
|
|
||
|
|
FormatType->TraditionalForm,
|
||
|
|
FrameTicks->None]}], "}"}]], "Output",
|
||
|
|
CellChangeTimes->{3.83235889012551*^9},
|
||
|
|
CellLabel->"Out[10]=",ExpressionUUID->"59696642-d59a-4e19-bbe0-4190c2a6b21e"]
|
||
|
|
}, Open ]],
|
||
|
|
|
||
|
|
Cell[BoxData[
|
||
|
|
RowBox[{
|
||
|
|
RowBox[{"tenWithOnlyTriangularFaces", "=",
|
||
|
|
RowBox[{"readData", "[", "\"\<ten_triangles.txt\>\"", "]"}]}],
|
||
|
|
";"}]], "Input",
|
||
|
|
CellChangeTimes->{{3.832358972124004*^9, 3.832358988818554*^9}},
|
||
|
|
CellLabel->"In[11]:=",ExpressionUUID->"58fabd89-5bb9-41b3-bf32-c3295633320c"],
|
||
|
|
|
||
|
|
Cell[CellGroupData[{
|
||
|
|
|
||
|
|
Cell[BoxData[
|
||
|
|
RowBox[{"Select", "[",
|
||
|
|
RowBox[{"tenWithOnlyTriangularFaces", ",", "primePolyhedronQ"}],
|
||
|
|
"]"}]], "Input",
|
||
|
|
CellChangeTimes->{{3.832358992787883*^9, 3.832358999622858*^9}},
|
||
|
|
CellLabel->"In[12]:=",ExpressionUUID->"46270647-9880-4dbd-b764-3cb9bd722a4d"],
|
||
|
|
|
||
|
|
Cell[BoxData[
|
||
|
|
RowBox[{"{", "}"}]], "Output",
|
||
|
|
CellChangeTimes->{3.832359159769298*^9},
|
||
|
|
CellLabel->"Out[12]=",ExpressionUUID->"474e557a-38a4-420d-bbbb-8c88eb0abe43"]
|
||
|
|
}, Open ]],
|
||
|
|
|
||
|
|
Cell[CellGroupData[{
|
||
|
|
|
||
|
|
Cell[BoxData[
|
||
|
|
RowBox[{"GraphData", "[", "\"\<IcosahedralGraph\>\"", "]"}]], "Input",
|
||
|
|
CellChangeTimes->{{3.8323592181071253`*^9, 3.832359222538947*^9}},
|
||
|
|
CellLabel->"In[13]:=",ExpressionUUID->"1c5453e9-3e05-44fa-be93-2eb9b94435da"],
|
||
|
|
|
||
|
|
Cell[BoxData[
|
||
|
|
GraphicsBox[
|
||
|
|
NamespaceBox["NetworkGraphics",
|
||
|
|
DynamicModuleBox[{Typeset`graph = HoldComplete[
|
||
|
|
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, {Null,
|
||
|
|
SparseArray[
|
||
|
|
Automatic, {12, 12}, 0, {
|
||
|
|
1, {{0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60}, {{3}, {5}, {
|
||
|
|
6}, {9}, {10}, {4}, {7}, {8}, {11}, {12}, {1}, {7}, {8}, {9}, {
|
||
|
|
10}, {2}, {5}, {6}, {11}, {12}, {1}, {4}, {6}, {9}, {11}, {1}, {
|
||
|
|
4}, {5}, {10}, {12}, {2}, {3}, {8}, {9}, {11}, {2}, {3}, {7}, {
|
||
|
|
10}, {12}, {1}, {3}, {5}, {7}, {11}, {1}, {3}, {6}, {8}, {12}, {
|
||
|
|
2}, {4}, {5}, {7}, {9}, {2}, {4}, {6}, {8}, {10}}}, Pattern}]}, {
|
||
|
|
VertexCoordinates -> {{0, -0.314}, {0, 3.602}, {0, -1.165}, {0, 0.78}, {
|
||
|
|
0.272, 0.157}, {-0.272, 0.157}, {3.12, -1.801}, {-3.12, -1.801}, {
|
||
|
|
0.675, -0.39}, {-0.675, -0.39}, {1.009, 0.583}, {-1.009, 0.583}}}]]},
|
||
|
|
TagBox[
|
||
|
|
GraphicsGroupBox[
|
||
|
|
GraphicsComplexBox[{{0., -0.314}, {0., 3.602}, {0., -1.165}, {0.,
|
||
|
|
0.78}, {0.272, 0.157}, {-0.272, 0.157}, {
|
||
|
|
3.12, -1.801}, {-3.12, -1.801}, {0.675, -0.39}, {-0.675, -0.39}, {
|
||
|
|
1.009, 0.583}, {-1.009, 0.583}}, {
|
||
|
|
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
|
||
|
|
ArrowBox[{{1, 3}, {1, 5}, {1, 6}, {1, 9}, {1, 10}, {2, 4}, {2, 7}, {
|
||
|
|
2, 8}, {2, 11}, {2, 12}, {3, 7}, {3, 8}, {3, 9}, {3, 10}, {4, 5}, {
|
||
|
|
4, 6}, {4, 11}, {4, 12}, {5, 6}, {5, 9}, {5, 11}, {6, 10}, {6,
|
||
|
|
12}, {7, 8}, {7, 9}, {7, 11}, {8, 10}, {8, 12}, {9, 11}, {10, 12}},
|
||
|
|
0.049699097291875605`]},
|
||
|
|
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
|
||
|
|
DiskBox[1, 0.049699097291875605], DiskBox[2, 0.049699097291875605],
|
||
|
|
DiskBox[3, 0.049699097291875605], DiskBox[4, 0.049699097291875605],
|
||
|
|
DiskBox[5, 0.049699097291875605], DiskBox[6, 0.049699097291875605],
|
||
|
|
DiskBox[7, 0.049699097291875605], DiskBox[8, 0.049699097291875605],
|
||
|
|
DiskBox[9, 0.049699097291875605], DiskBox[10, 0.049699097291875605],
|
||
|
|
DiskBox[11, 0.049699097291875605],
|
||
|
|
DiskBox[12, 0.049699097291875605]}}]],
|
||
|
|
MouseAppearanceTag["NetworkGraphics"]],
|
||
|
|
AllowKernelInitialization->False]],
|
||
|
|
DefaultBaseStyle->{
|
||
|
|
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
|
||
|
|
FormatType->TraditionalForm,
|
||
|
|
FrameTicks->None]], "Output",
|
||
|
|
CellChangeTimes->{3.832359229414053*^9},
|
||
|
|
CellLabel->"Out[13]=",ExpressionUUID->"4d40d1f5-230d-4859-adf7-e6ea53d5ebd3"]
|
||
|
|
}, Open ]],
|
||
|
|
|
||
|
|
Cell[CellGroupData[{
|
||
|
|
|
||
|
|
Cell[BoxData[
|
||
|
|
RowBox[{"decomposable", "[", "%13", "]"}]], "Input",
|
||
|
|
CellChangeTimes->{{3.8323592418837347`*^9, 3.832359257792131*^9}},
|
||
|
|
CellLabel->"In[15]:=",ExpressionUUID->"5b1b25e1-7e06-44eb-843d-d1c3ff13890a"],
|
||
|
|
|
||
|
|
Cell[BoxData[
|
||
|
|
RowBox[{"{",
|
||
|
|
RowBox[{"4168", ",", "0"}], "}"}]], "Output",
|
||
|
|
CellChangeTimes->{{3.832359249109088*^9, 3.832359270219946*^9}},
|
||
|
|
CellLabel->"Out[15]=",ExpressionUUID->"b522bb32-2185-490f-a230-8b3547b91c8f"]
|
||
|
|
}, Open ]],
|
||
|
|
|
||
|
|
Cell[CellGroupData[{
|
||
|
|
|
||
|
|
Cell[BoxData[
|
||
|
|
RowBox[{"GraphData", "[", "\"\<DodecahedralGraph\>\"", "]"}]], "Input",
|
||
|
|
CellChangeTimes->{{3.832359280160306*^9, 3.832359285590344*^9}},
|
||
|
|
CellLabel->"In[16]:=",ExpressionUUID->"dab9913c-fae2-4289-a094-4a977fb44457"],
|
||
|
|
|
||
|
|
Cell[BoxData[
|
||
|
|
GraphicsBox[
|
||
|
|
NamespaceBox["NetworkGraphics",
|
||
|
|
DynamicModuleBox[{Typeset`graph = HoldComplete[
|
||
|
|
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
|
||
|
|
20}, {Null,
|
||
|
|
SparseArray[
|
||
|
|
Automatic, {20, 20}, 0, {
|
||
|
|
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
|
||
|
|
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
|
||
|
|
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {11}, {
|
||
|
|
16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {5}, {7}, {
|
||
|
|
12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {1}, {4}, {
|
||
|
|
10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {3}, {5}, {
|
||
|
|
17}, {4}, {6}, {18}}}, Pattern}]}, {
|
||
|
|
VertexCoordinates -> CompressedData["
|
||
|
|
1:eJxTTMoPSmViYGAQAWIQ/SP48dLZR37Y12ftKZks8cB+33wp/bsqn/ZHpVjf
|
||
|
|
9++9vp8BCuxN43Z58vyyt9xyomzf/Hf2QMnpeUJf90P174fph8rvh8nD9L+r
|
||
|
|
AZnA7HCyDGTDd/s3gTvkWl//398udvPc9+DLUH237DfNfb/8mPd9e3VDjjUy
|
||
|
|
UUf2H/6qEdN/iOnAn5UfL/kmvbA3BoPv+2H6oer3w9SngcEz+4dVIuvcH76z
|
||
|
|
DwE5T+GTPUsYn+6muddh5jnAzIPavx9mP8y9y4C6NhQ9gJm3H2YeTB7iv8/7
|
||
|
|
AVLKoH4=
|
||
|
|
"]}]]},
|
||
|
|
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
|
||
|
|
1:eJxTTMoPSmViYGAQAWIQ/SP48dLZR37Y12ftKZks8cB+33wp/bsqn/ZHpVjf
|
||
|
|
9++9vp8BCuxN43Z58vyyt9xyomzf/Hf2QMnpeUJf90P174fph8rvh8nD9L+r
|
||
|
|
AZnA7HCyDGTDd/s3gTvkWl//398udvPc9+DLUH237DfNfb/8mPd9e3VDjjUy
|
||
|
|
UUf2H/6qEdN/iOnAn5UfL/kmvbA3BoPv+2H6oer3w9SngcEz+4dVIuvcH76z
|
||
|
|
DwE5T+GTPUsYn+6muddh5jnAzIPavx9mP8y9y4C6NhQ9gJm3H2YeTB7iv8/7
|
||
|
|
AVLKoH4=
|
||
|
|
"], {
|
||
|
|
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
|
||
|
|
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
|
||
|
|
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {
|
||
|
|
6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9,
|
||
|
|
14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17,
|
||
|
|
19}, {18, 20}}, 0.0412452419793366]},
|
||
|
|
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
|
||
|
|
DiskBox[1, 0.0412452419793366], DiskBox[2, 0.0412452419793366],
|
||
|
|
DiskBox[3, 0.0412452419793366], DiskBox[4, 0.0412452419793366],
|
||
|
|
DiskBox[5, 0.0412452419793366], DiskBox[6, 0.0412452419793366],
|
||
|
|
DiskBox[7, 0.0412452419793366], DiskBox[8, 0.0412452419793366],
|
||
|
|
DiskBox[9, 0.0412452419793366], DiskBox[10, 0.0412452419793366],
|
||
|
|
DiskBox[11, 0.0412452419793366], DiskBox[12, 0.0412452419793366],
|
||
|
|
DiskBox[13, 0.0412452419793366], DiskBox[14, 0.0412452419793366],
|
||
|
|
DiskBox[15, 0.0412452419793366], DiskBox[16, 0.0412452419793366],
|
||
|
|
DiskBox[17, 0.0412452419793366], DiskBox[18, 0.0412452419793366],
|
||
|
|
DiskBox[19, 0.0412452419793366], DiskBox[20, 0.0412452419793366]}}]],
|
||
|
|
|
||
|
|
MouseAppearanceTag["NetworkGraphics"]],
|
||
|
|
AllowKernelInitialization->False]],
|
||
|
|
DefaultBaseStyle->{
|
||
|
|
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
|
||
|
|
FormatType->TraditionalForm,
|
||
|
|
FrameTicks->None]], "Output",
|
||
|
|
CellChangeTimes->{3.8323592867221823`*^9},
|
||
|
|
CellLabel->"Out[16]=",ExpressionUUID->"e2cc6979-d97d-4d01-a44d-89fd78389d37"]
|
||
|
|
}, Open ]],
|
||
|
|
|
||
|
|
Cell[CellGroupData[{
|
||
|
|
|
||
|
|
Cell[BoxData[
|
||
|
|
RowBox[{"decomposable", "[", "%", "]"}]], "Input",
|
||
|
|
CellChangeTimes->{{3.832359289925075*^9, 3.832359292818961*^9}},
|
||
|
|
CellLabel->"In[17]:=",ExpressionUUID->"177f7847-e797-430d-8ecd-ce2bcfef59c2"],
|
||
|
|
|
||
|
|
Cell[BoxData[
|
||
|
|
RowBox[{"{",
|
||
|
|
RowBox[{"0", ",", "4168"}], "}"}]], "Output",
|
||
|
|
CellChangeTimes->{3.832359309023213*^9},
|
||
|
|
CellLabel->"Out[17]=",ExpressionUUID->"54c23917-ffd3-4a18-bbb8-02665896469e"]
|
||
|
|
}, Open ]]
|
||
|
|
},
|
||
|
|
WindowSize->{1425., 776.25},
|
||
|
|
WindowMargins->{{7.5, Automatic}, {7.5, Automatic}},
|
||
|
|
FrontEndVersion->"12.2 for Linux x86 (64-bit) (December 12, 2020)",
|
||
|
|
StyleDefinitions->"Default.nb",
|
||
|
|
ExpressionUUID->"d3395cd3-c66a-48cf-b7c9-b2503d6f719a"
|
||
|
|
]
|
||
|
|
(* End of Notebook Content *)
|
||
|
|
|
||
|
|
(* Internal cache information *)
|
||
|
|
(*CellTagsOutline
|
||
|
|
CellTagsIndex->{}
|
||
|
|
*)
|
||
|
|
(*CellTagsIndex
|
||
|
|
CellTagsIndex->{}
|
||
|
|
*)
|
||
|
|
(*NotebookFileOutline
|
||
|
|
Notebook[{
|
||
|
|
Cell[CellGroupData[{
|
||
|
|
Cell[422, 15, 359, 6, 29, "Input",ExpressionUUID->"db347c93-28af-46ae-97e4-0f025565b28b"],
|
||
|
|
Cell[784, 23, 455, 11, 23, "Print",ExpressionUUID->"91a871f7-7ad4-4d9b-a238-89534a13d73b"],
|
||
|
|
Cell[1242, 36, 627, 13, 22, "Message",ExpressionUUID->"1bd7e6c6-08bf-40e0-ada5-1b9c296f7ca2"],
|
||
|
|
Cell[1872, 51, 635, 14, 25, "Print",ExpressionUUID->"ecde106e-abb1-4475-bcc8-474beba04d23"]
|
||
|
|
}, Open ]],
|
||
|
|
Cell[CellGroupData[{
|
||
|
|
Cell[2544, 70, 198, 3, 29, "Input",ExpressionUUID->"8cc401a5-7736-45db-b864-33aa0faea5b6"],
|
||
|
|
Cell[2745, 75, 558, 11, 54, "Output",ExpressionUUID->"2bca6177-8c17-477b-b102-0112c41c8522"]
|
||
|
|
}, Open ]],
|
||
|
|
Cell[3318, 89, 320, 7, 35, "Text",ExpressionUUID->"b79ac481-66e7-4669-b8f4-0cea700ed78c"],
|
||
|
|
Cell[3641, 98, 1734, 45, 113, "Input",ExpressionUUID->"0491d7dc-7152-49be-9137-070980e44ae7"],
|
||
|
|
Cell[5378, 145, 426, 8, 58, "Text",ExpressionUUID->"83ebdaf9-e7b9-4912-83aa-66018e3b4210"],
|
||
|
|
Cell[5807, 155, 4790, 122, 257, "Input",ExpressionUUID->"1445a032-9806-4ee7-8079-9849d6ac9896"],
|
||
|
|
Cell[10600, 279, 563, 10, 58, "Text",ExpressionUUID->"a601bc96-4656-4520-9aeb-158895d9368a"],
|
||
|
|
Cell[11166, 291, 5045, 125, 257, "Input",ExpressionUUID->"58712807-a428-4b89-8b30-be4ce33480f8"],
|
||
|
|
Cell[16214, 418, 562, 10, 58, "Text",ExpressionUUID->"ab257888-085b-4fde-8617-8abd299bbd66"],
|
||
|
|
Cell[16779, 430, 1136, 28, 29, "Input",ExpressionUUID->"c0281df0-ade3-4fd2-99f7-1a53b1d66fa0"],
|
||
|
|
Cell[17918, 460, 271, 5, 29, "Input",ExpressionUUID->"2f37be41-b92f-40b8-95c3-35b1428bea5c"],
|
||
|
|
Cell[CellGroupData[{
|
||
|
|
Cell[18214, 469, 248, 4, 29, "Input",ExpressionUUID->"29f7a6e5-dd5a-4186-8140-359fe21550df"],
|
||
|
|
Cell[18465, 475, 20213, 444, 450, "Output",ExpressionUUID->"59696642-d59a-4e19-bbe0-4190c2a6b21e"]
|
||
|
|
}, Open ]],
|
||
|
|
Cell[38693, 922, 300, 6, 29, "Input",ExpressionUUID->"58fabd89-5bb9-41b3-bf32-c3295633320c"],
|
||
|
|
Cell[CellGroupData[{
|
||
|
|
Cell[39018, 932, 270, 5, 29, "Input",ExpressionUUID->"46270647-9880-4dbd-b764-3cb9bd722a4d"],
|
||
|
|
Cell[39291, 939, 166, 3, 33, "Output",ExpressionUUID->"474e557a-38a4-420d-bbbb-8c88eb0abe43"]
|
||
|
|
}, Open ]],
|
||
|
|
Cell[CellGroupData[{
|
||
|
|
Cell[39494, 947, 232, 3, 29, "Input",ExpressionUUID->"1c5453e9-3e05-44fa-be93-2eb9b94435da"],
|
||
|
|
Cell[39729, 952, 2511, 43, 330, "Output",ExpressionUUID->"4d40d1f5-230d-4859-adf7-e6ea53d5ebd3"]
|
||
|
|
}, Open ]],
|
||
|
|
Cell[CellGroupData[{
|
||
|
|
Cell[42277, 1000, 214, 3, 29, "Input",ExpressionUUID->"5b1b25e1-7e06-44eb-843d-d1c3ff13890a"],
|
||
|
|
Cell[42494, 1005, 221, 4, 33, "Output",ExpressionUUID->"b522bb32-2185-490f-a230-8b3547b91c8f"]
|
||
|
|
}, Open ]],
|
||
|
|
Cell[CellGroupData[{
|
||
|
|
Cell[42752, 1014, 231, 3, 29, "Input",ExpressionUUID->"dab9913c-fae2-4289-a094-4a977fb44457"],
|
||
|
|
Cell[42986, 1019, 3164, 56, 359, "Output",ExpressionUUID->"e2cc6979-d97d-4d01-a44d-89fd78389d37"]
|
||
|
|
}, Open ]],
|
||
|
|
Cell[CellGroupData[{
|
||
|
|
Cell[46187, 1080, 210, 3, 29, "Input",ExpressionUUID->"177f7847-e797-430d-8ecd-ce2bcfef59c2"],
|
||
|
|
Cell[46400, 1085, 197, 4, 56, "Output",ExpressionUUID->"54c23917-ffd3-4a18-bbb8-02665896469e"]
|
||
|
|
}, Open ]]
|
||
|
|
}
|
||
|
|
]
|
||
|
|
*)
|
||
|
|
|