Circle-Packings/fractal_dimension/mcmullen_stuff/cubetree.py

174 lines
6.4 KiB
Python
Raw Normal View History

2021-07-15 21:59:31 -07:00
#https://www.desmos.com/calculator/vaskxmhoxh
from cubenode import Node
import math
import numpy as np
import time
from scipy.sparse import csr_matrix
def functions(n, z):
if n == 0:
return -1.732050808 + 1j + np.conj(3./(1.732050808 - 1.000000000j + z))
elif n == 1:
return -2.000000000j + np.conj(3./(2.000000000j + z))
elif n == 2:
return 1.732050808 + 1j + np.conj(3./(-1.732050808 - 1.000000000j + z))
elif n == 3:
return 0.202041j + np.conj(0.0306154/(-0.202041j + z))
elif n == 4:
return 0.174973 - 0.101021j + np.conj(0.0306154/(-0.174973 + 0.101021j + z))
elif n == 5:
return -0.174973 - 0.101021j + np.conj(0.0306154/(0.174973 + 0.101021j + z))
def derivatives(n, z):
if n == 0:
return abs(-0.333333*(1.732050808 - 1.000000000j + z)**2)
elif n == 1:
return abs(-0.333333*(2.000000000j + z)**2)
elif n == 2:
return abs(-0.333333*(-1.732050808 - 1.000000000j + z)**2)
elif n == 3:
return abs(-32.6633*(-0.202041j + z)**2)
elif n == 4:
return abs(-32.6633*(-0.174973 + 0.101021j + z)**2)
elif n == 5:
return abs(-32.6633*(0.174973 + 0.101021j + z)**2)
def samplePoint(word):
points = [-0.606218 + 0.35j, 0. - 0.7j, 0.606218 + 0.35j, 0. +
0.181837j, 0.157475 - 0.0909185j, -0.157475 - 0.0909185j]
p = points[word[-1]]
for letter in word[-2::-1]:
p = functions(letter, p)
return p
def sampleValue(word):
return derivatives(word[0], samplePoint(word))
def generateTree(words, dc):
generators = [np.array([[0., 1., 1., 0., -1., 0., 0., 0.], [0., 1., 0., 0., 0., 0., 0.,
0.], [0., 0., 1., 0., 0., 0., 0., 0.], [0., 3., 3., 0., 0., 0.,
0., -1.], [0., 0., 0., 0., 1., 0., 0., 0.], [0., 3., 2., 0., 1., 0.,
0., -1.], [0., 2., 3., 0., 1., 0., 0., -1.], [0., 2., 2., 0., 2.,
0., 0., -1.]]),
np.array([[1., 0., 0., 0., 0., 0., 0., 0.], [1., 0., 3., 2., -1., 0., 0.,
0.], [0., 0., 1., 0., 0., 0., 0., 0.], [0., 0., 0., 1., 0., 0., 0.,
0.], [0., 0., 4., 2., -1., 0., 0., 0.], [0., 0., 3., 3., -1., 0.,
0., 0.], [-1., 0., 1., 1., 0., 0., 0., 0.], [-1., 0., 4., 3., -1.,
0., 0., 0.]]),
np.array([[1., 0., 0., 0., 0., 0., 0., 0.], [1., 0., 0., -1., 0., 1., 0.,
0.], [4., 0., 0., -1., -1., 3., 0., 0.], [0., 0., 0., 1., 0., 0.,
0., 0.], [4., 0., 0., -2., -1., 4., 0., 0.], [0., 0., 0., 0., 0.,
1., 0., 0.], [3., 0., 0., 0., -1., 3., 0., 0.], [3., 0.,
0., -1., -1., 4., 0., 0.]]),
np.array([[0., 0., 0., 0., 3., 3., -1., 0.], [0., 1., 0., 0., 0., 0., 0.,
0.], [0., -1., 0., 0., 4., 3., -1., 0.], [0., -1., 0., 0., 3.,
4., -1., 0.], [0., 0., 0., 0., 1., 0., 0., 0.], [0., 0., 0., 0., 0.,
1., 0., 0.], [0., -2., 0., 0., 4., 4., -1., 0.], [0., -1., 0., 0.,
1., 1., 0., 0.]]),
np.array([[0., 0., 0., 0., -1., 3., 3., 0.], [0., 0., 0., -1., -1., 4., 3.,
0.], [0., 0., 0., -1., -1., 3., 4., 0.], [0., 0., 0., 1., 0., 0.,
0., 0.], [0., 0., 0., -2., -1., 4., 4., 0.], [0., 0., 0., 0., 0.,
1., 0., 0.], [0., 0., 0., 0., 0., 0., 1., 0.], [0., 0., 0., -1., 0.,
1., 1., 0.]]),
np.array([[0., -1., 0., 0., 4., 0., 3., -1.], [0., -1., 0., 0., 4., 0., 2.,
0.], [0., 0., 0., 0., 1., 0., 1., -1.], [0., -1., 0., 0., 3., 0.,
3., 0.], [0., 0., 0., 0., 1., 0., 0., 0.], [0., -1., 0., 0., 3., 0.,
2., 1.], [0., 0., 0., 0., 0., 0., 1., 0.], [0., 0., 0., 0., 0., 0.,
0., 1.]])]
root = Node([-1,2.632993161855454,2.632993161855454,2.632993161855454,6.265986323710909,6.265986323710909,6.265986323710909,9.898979485566363], [], words, False)
current_leaves = [root]
nodes = 1
while True:
new_leaves = []
for leaf in current_leaves:
next_gen = leaf.next_generation(words, dc, generators)
new_leaves += next_gen
nodes += len(next_gen) if len(next_gen) > 1 else 0
if current_leaves == new_leaves:
break
else:
current_leaves = new_leaves
for i,leaf in enumerate(current_leaves):
words[str(leaf.word)] = i
print(len(current_leaves), "partitions")
print(nodes,"nodes")
return current_leaves
def constructMatrix(words, dc):
leave = generateTree(words, dc)
row = []
col = []
data = []
for i,leaf in enumerate(leave):
thing = words[str(leaf.word[1:])]
if isinstance(thing,int):
row.append(i)
col.append(thing)
data.append(sampleValue(leaf.word))
else:
sample = sampleValue(leaf.word)
for wor in thing.leaves():
row.append(i)
col.append(words[str(wor.word)])
data.append(sample)
return csr_matrix((data,(row,col)),shape=(len(leave),len(leave)))
def secant(x0,y0,x1,y1,z):
return x0 - (y0-z) * ((x1-x0)/(y1-y0))
def matrixFunction(matrix,l,a):
matrix = matrix.power(a)
vec = np.ones(l)
previous_entry = vec[0]
previous_val = 0
current = matrix * vec
current_val = current[0] / previous_entry
count = 0
while count < 10000000000 and abs(current_val - previous_val) > 1e-15:
previous_val = current_val
previous_entry = current[0]
current = matrix * current
#print(current[0],previous_entry)
current_val = current[0] / previous_entry
count += 1
print("power method:", count)
return current_val
def secantMethod(matrix,l,z,x1,x2,e,its):
k1 = x1
k2 = x2
y1 = matrixFunction(matrix,l,k1)
y2 = matrixFunction(matrix,l,k2)
#y1 = testFunction(k1)
#y2 = testFunction(k2)
count = 1
print(count,k1,y1)
while abs(y1-z)>e and count<its:
k3 = secant(k1,y1,k2,y2,z)
k1 = k2
y1 = y2
k2 = k3
y2 = matrixFunction(matrix,l,k2)
count += 1
print(count,k1,y1)
def main():
start = time.time()
m = 10
print("maximum:",m)
words = {}
matrix = constructMatrix(words,m)
#print(matrix)
print("construction (s): %f\nconstruction (m): %f" % (time.time()-start, (time.time()-start)/60))
#print(csr_matrix.transpose(matrix))
print(csr_matrix.count_nonzero(matrix), (matrix.shape[0])*5)
secantMethod(matrix,matrix.shape[0],1,1.47,1.49,10**(-10),1000)
print("total (s): %f\ntotal (m): %f" % (time.time()-start, (time.time()-start)/60))
main()