#https://www.desmos.com/calculator/vaskxmhoxh from cubenode import Node import math import numpy as np import time from scipy.sparse import csr_matrix def functions(n, z): if n == 0: return -1.732050808 + 1j + np.conj(3./(1.732050808 - 1.000000000j + z)) elif n == 1: return -2.000000000j + np.conj(3./(2.000000000j + z)) elif n == 2: return 1.732050808 + 1j + np.conj(3./(-1.732050808 - 1.000000000j + z)) elif n == 3: return 0.202041j + np.conj(0.0306154/(-0.202041j + z)) elif n == 4: return 0.174973 - 0.101021j + np.conj(0.0306154/(-0.174973 + 0.101021j + z)) elif n == 5: return -0.174973 - 0.101021j + np.conj(0.0306154/(0.174973 + 0.101021j + z)) def derivatives(n, z): if n == 0: return abs(-0.333333*(1.732050808 - 1.000000000j + z)**2) elif n == 1: return abs(-0.333333*(2.000000000j + z)**2) elif n == 2: return abs(-0.333333*(-1.732050808 - 1.000000000j + z)**2) elif n == 3: return abs(-32.6633*(-0.202041j + z)**2) elif n == 4: return abs(-32.6633*(-0.174973 + 0.101021j + z)**2) elif n == 5: return abs(-32.6633*(0.174973 + 0.101021j + z)**2) def samplePoint(word): points = [-0.606218 + 0.35j, 0. - 0.7j, 0.606218 + 0.35j, 0. + 0.181837j, 0.157475 - 0.0909185j, -0.157475 - 0.0909185j] p = points[word[-1]] for letter in word[-2::-1]: p = functions(letter, p) return p def sampleValue(word): return derivatives(word[0], samplePoint(word)) def generateTree(words, dc): generators = [np.array([[0., 1., 1., 0., -1., 0., 0., 0.], [0., 1., 0., 0., 0., 0., 0., 0.], [0., 0., 1., 0., 0., 0., 0., 0.], [0., 3., 3., 0., 0., 0., 0., -1.], [0., 0., 0., 0., 1., 0., 0., 0.], [0., 3., 2., 0., 1., 0., 0., -1.], [0., 2., 3., 0., 1., 0., 0., -1.], [0., 2., 2., 0., 2., 0., 0., -1.]]), np.array([[1., 0., 0., 0., 0., 0., 0., 0.], [1., 0., 3., 2., -1., 0., 0., 0.], [0., 0., 1., 0., 0., 0., 0., 0.], [0., 0., 0., 1., 0., 0., 0., 0.], [0., 0., 4., 2., -1., 0., 0., 0.], [0., 0., 3., 3., -1., 0., 0., 0.], [-1., 0., 1., 1., 0., 0., 0., 0.], [-1., 0., 4., 3., -1., 0., 0., 0.]]), np.array([[1., 0., 0., 0., 0., 0., 0., 0.], [1., 0., 0., -1., 0., 1., 0., 0.], [4., 0., 0., -1., -1., 3., 0., 0.], [0., 0., 0., 1., 0., 0., 0., 0.], [4., 0., 0., -2., -1., 4., 0., 0.], [0., 0., 0., 0., 0., 1., 0., 0.], [3., 0., 0., 0., -1., 3., 0., 0.], [3., 0., 0., -1., -1., 4., 0., 0.]]), np.array([[0., 0., 0., 0., 3., 3., -1., 0.], [0., 1., 0., 0., 0., 0., 0., 0.], [0., -1., 0., 0., 4., 3., -1., 0.], [0., -1., 0., 0., 3., 4., -1., 0.], [0., 0., 0., 0., 1., 0., 0., 0.], [0., 0., 0., 0., 0., 1., 0., 0.], [0., -2., 0., 0., 4., 4., -1., 0.], [0., -1., 0., 0., 1., 1., 0., 0.]]), np.array([[0., 0., 0., 0., -1., 3., 3., 0.], [0., 0., 0., -1., -1., 4., 3., 0.], [0., 0., 0., -1., -1., 3., 4., 0.], [0., 0., 0., 1., 0., 0., 0., 0.], [0., 0., 0., -2., -1., 4., 4., 0.], [0., 0., 0., 0., 0., 1., 0., 0.], [0., 0., 0., 0., 0., 0., 1., 0.], [0., 0., 0., -1., 0., 1., 1., 0.]]), np.array([[0., -1., 0., 0., 4., 0., 3., -1.], [0., -1., 0., 0., 4., 0., 2., 0.], [0., 0., 0., 0., 1., 0., 1., -1.], [0., -1., 0., 0., 3., 0., 3., 0.], [0., 0., 0., 0., 1., 0., 0., 0.], [0., -1., 0., 0., 3., 0., 2., 1.], [0., 0., 0., 0., 0., 0., 1., 0.], [0., 0., 0., 0., 0., 0., 0., 1.]])] root = Node([-1,2.632993161855454,2.632993161855454,2.632993161855454,6.265986323710909,6.265986323710909,6.265986323710909,9.898979485566363], [], words, False) current_leaves = [root] nodes = 1 while True: new_leaves = [] for leaf in current_leaves: next_gen = leaf.next_generation(words, dc, generators) new_leaves += next_gen nodes += len(next_gen) if len(next_gen) > 1 else 0 if current_leaves == new_leaves: break else: current_leaves = new_leaves for i,leaf in enumerate(current_leaves): words[str(leaf.word)] = i print(len(current_leaves), "partitions") print(nodes,"nodes") return current_leaves def constructMatrix(words, dc): leave = generateTree(words, dc) row = [] col = [] data = [] for i,leaf in enumerate(leave): thing = words[str(leaf.word[1:])] if isinstance(thing,int): row.append(i) col.append(thing) data.append(sampleValue(leaf.word)) else: sample = sampleValue(leaf.word) for wor in thing.leaves(): row.append(i) col.append(words[str(wor.word)]) data.append(sample) return csr_matrix((data,(row,col)),shape=(len(leave),len(leave))) def secant(x0,y0,x1,y1,z): return x0 - (y0-z) * ((x1-x0)/(y1-y0)) def matrixFunction(matrix,l,a): matrix = matrix.power(a) vec = np.ones(l) previous_entry = vec[0] previous_val = 0 current = matrix * vec current_val = current[0] / previous_entry count = 0 while count < 10000000000 and abs(current_val - previous_val) > 1e-15: previous_val = current_val previous_entry = current[0] current = matrix * current #print(current[0],previous_entry) current_val = current[0] / previous_entry count += 1 print("power method:", count) return current_val def secantMethod(matrix,l,z,x1,x2,e,its): k1 = x1 k2 = x2 y1 = matrixFunction(matrix,l,k1) y2 = matrixFunction(matrix,l,k2) #y1 = testFunction(k1) #y2 = testFunction(k2) count = 1 print(count,k1,y1) while abs(y1-z)>e and count