(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 12.2' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 24635, 660] NotebookOptionsPosition[ 22569, 618] NotebookOutlinePosition[ 22965, 634] CellTagsIndexPosition[ 22922, 631] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["Polyhedral Gluing", "Title", CellChangeTimes->{{3.8646851013555*^9, 3.8646851042932177`*^9}},ExpressionUUID->"c6976cd9-3620-46ab-9d1d-\ 41139264d06c"], Cell["\<\ If two polyhedra have a \[OpenCurlyDoubleQuote]compatible\ \[CloseCurlyDoubleQuote] face, meaning that the faces are the same polygon \ and have the same bilinear forms between each circle on the face, then a new \ polyhedron can be formed by gluing those two polyhedra together along that \ face. For example, two square pyramids can be glued along their square base \ resulting in an octahedron. Koebe-Andreev-Thurston then suggests that the \ same process can be done to packings. The gram matrix of the result can be \ computed in terms of the gram matrices of the two polyhedra being glued \ together, which is the point of this code.\ \>", "Text", CellChangeTimes->{{3.8646851216008253`*^9, 3.864685203225716*^9}, { 3.864685249833454*^9, 3.864685394551296*^9}, {3.864685425661797*^9, 3.864685443377795*^9}},ExpressionUUID->"69f0dc3e-3370-4694-8ecf-\ 6a022a4f5748"], Cell[CellGroupData[{ Cell["Code", "Section", CellChangeTimes->{{3.8646890911830273`*^9, 3.864689092234721*^9}},ExpressionUUID->"8cc30de0-2341-4e1e-884d-\ b38111d69159"], Cell["\<\ fullGlue is the most useful function here. It takes two gram matrices and the \ number of vertices in the shared face. Importantly, the gram matrices should \ be organized so that the minor corresponding to the shared face is in the \ bottom left of the first gram matrix and top right of the second gram matrix.\ \ \>", "Text", CellChangeTimes->{{3.864686062280192*^9, 3.864686067946493*^9}, { 3.8646890088746853`*^9, 3.864689070448163*^9}, {3.864689146741778*^9, 3.8646891552110786`*^9}},ExpressionUUID->"66dfbbac-8c73-460a-a03c-\ 484d0f1ef4b6"], Cell[BoxData[ RowBox[{ RowBox[{"glue", "[", RowBox[{"G_", ",", "n_", ",", "m_", ",", "p_"}], "]"}], ":=", RowBox[{"Block", "[", RowBox[{ RowBox[{"{", RowBox[{ "horizontal", ",", "vertical", ",", "eqs", ",", "solution", ",", "indices"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"horizontal", "=", RowBox[{"Inverse", "[", RowBox[{"G", "\[LeftDoubleBracket]", RowBox[{ RowBox[{ RowBox[{"n", "-", "2"}], ";;", RowBox[{"n", "+", "1"}]}], ",", RowBox[{ RowBox[{"n", "-", "2"}], ";;", RowBox[{"n", "+", "1"}]}]}], "\[RightDoubleBracket]"}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"vertical", "=", RowBox[{"Inverse", "[", RowBox[{"G", "\[LeftDoubleBracket]", RowBox[{ RowBox[{ RowBox[{"n", "-", "p"}], ";;", RowBox[{"n", "-", "p", "+", "3"}]}], ",", RowBox[{ RowBox[{"n", "-", "p"}], ";;", RowBox[{"n", "-", "p", "+", "3"}]}]}], "\[RightDoubleBracket]"}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"eqs", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{ RowBox[{"G", "\[LeftDoubleBracket]", RowBox[{"j", ",", RowBox[{"n", "+", "1", "+", "i"}]}], "\[RightDoubleBracket]"}], "\[Equal]", RowBox[{"horizontal", ".", RowBox[{"G", "\[LeftDoubleBracket]", RowBox[{ RowBox[{ RowBox[{"n", "-", "2"}], ";;", RowBox[{"n", "+", "1"}]}], ",", RowBox[{"n", "+", "1", "+", "i"}]}], "\[RightDoubleBracket]"}], ".", RowBox[{"G", "\[LeftDoubleBracket]", RowBox[{"j", ",", RowBox[{ RowBox[{"n", "-", "2"}], ";;", RowBox[{"n", "+", "1"}]}]}], "\[RightDoubleBracket]"}]}]}], ",", RowBox[{"{", RowBox[{"i", ",", RowBox[{"m", "-", "1", "-", "p"}]}], "}"}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"n", "-", "p"}]}], "}"}]}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"eqs", "=", RowBox[{"Flatten", "[", RowBox[{"AppendTo", "[", RowBox[{"eqs", ",", RowBox[{"Table", "[", RowBox[{ RowBox[{ RowBox[{"G", "\[LeftDoubleBracket]", RowBox[{"i", ",", RowBox[{"n", "+", "1", "+", "j"}]}], "\[RightDoubleBracket]"}], "\[Equal]", RowBox[{"vertical", ".", RowBox[{"G", "\[LeftDoubleBracket]", RowBox[{"i", ",", RowBox[{ RowBox[{"n", "-", "p"}], ";;", RowBox[{"n", "-", "p", "+", "3"}]}]}], "\[RightDoubleBracket]"}], ".", RowBox[{"G", "\[LeftDoubleBracket]", RowBox[{ RowBox[{ RowBox[{"n", "-", "p"}], ";;", RowBox[{"n", "-", "p", "+", "3"}]}], ",", RowBox[{"n", "+", "1", "+", "j"}]}], "\[RightDoubleBracket]"}]}]}], ",", RowBox[{"{", RowBox[{"i", ",", RowBox[{"n", "-", "p"}]}], "}"}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"m", "-", "1", "-", "p"}]}], "}"}]}], "]"}]}], "]"}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"indices", "=", RowBox[{"Join", "[", RowBox[{ RowBox[{"{", "1", "}"}], ",", RowBox[{"Range", "[", RowBox[{ RowBox[{"n", "-", "p", "+", "1"}], ",", RowBox[{"n", "-", "p", "+", "3"}]}], "]"}], ",", RowBox[{"{", RowBox[{"n", "+", "m", "-", "p"}], "}"}]}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"solution", "=", RowBox[{ RowBox[{"G", "\[LeftDoubleBracket]", RowBox[{"1", ",", RowBox[{"n", "+", "m", "-", "p"}]}], "\[RightDoubleBracket]"}], "\[Rule]", RowBox[{"Min", "[", RowBox[{ RowBox[{"Solve", "[", RowBox[{ RowBox[{"Det", "[", RowBox[{"G", "\[LeftDoubleBracket]", RowBox[{"indices", ",", "indices"}], "\[RightDoubleBracket]"}], "]"}], "\[Equal]", "0"}], "]"}], "/.", RowBox[{ RowBox[{"{", RowBox[{ SubscriptBox["x", RowBox[{"_", ",", "_"}]], "\[Rule]", "y_"}], "}"}], "\[Rule]", "y"}]}], "]"}]}]}], ";", "\[IndentingNewLine]", RowBox[{"G", "/.", RowBox[{"Flatten", "[", RowBox[{"Join", "[", RowBox[{ RowBox[{"Solve", "[", RowBox[{"eqs", "/.", "solution"}], "]"}], ",", RowBox[{"{", "solution", "}"}]}], "]"}], "]"}]}]}]}], "\[IndentingNewLine]", "]"}]}]], "Input", CellChangeTimes->CompressedData[" 1:eJwdz1soQwEAxvGT1bJyeaJcSmto2lGWZsJW9rTy5NKpyS0ZRiPK5YGGyCXU 2lwTYhFtIxPngRQjhJZh7hI2hz1IRFLsOw9fv8evP7+4OkvtRxBElG+w+duP s9nnTQ+1BLHmLeiHt3xGU5Oj8EPhHIclTOUklBZKZmHdc4YZpon1q3Bm728N mj+dB5BUCh1QHKM6gaJvzimk3a5z6ErkMrCdGvljf7oTOHafSxfrgVCkWQyG XVcrIbDhYC4ULtw+hcNxzUQEHJDK+JDoSBLAJvONEFati0nYL1PlQOrBqIJc nbYUhkRWlMHM9kYtpFvuaiBZ+6WDPMlKK5QfunuhPz3dBwP2KQN8z1cYYTYj mICescYp2O2Qz8PfHYsFDqZSNqiQExuwXhNnhyerhjO4m0tfQmPPG2tRm+ce RianPLKdJvIV2k3HP/DIKwzb9jkn0MTB+M7yBHht9RZA5ZBVDcNjX3TQxqMY uBxBs/4DTu0aTA== "], CellLabel->"In[1]:=",ExpressionUUID->"f999f2c9-b767-4605-ad2f-66ff04e65410"], Cell[BoxData[ RowBox[{ RowBox[{"glueGramMatrix", "[", RowBox[{"G1_", ",", "G2_", ",", "p_"}], "]"}], ":=", RowBox[{"With", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"n", "=", RowBox[{"Length", "[", "G1", "]"}]}], ",", RowBox[{"m", "=", RowBox[{"Length", "[", "G2", "]"}]}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"Table", "[", RowBox[{ RowBox[{"Which", "[", RowBox[{ RowBox[{ RowBox[{"i", "\[LessEqual]", "n"}], "&&", RowBox[{"j", "\[LessEqual]", "n"}]}], ",", RowBox[{"G1", "\[LeftDoubleBracket]", RowBox[{"i", ",", "j"}], "\[RightDoubleBracket]"}], ",", RowBox[{ RowBox[{"i", ">", "n"}], "&&", RowBox[{"j", "\[LessEqual]", RowBox[{"n", "-", "p"}]}]}], ",", SubscriptBox["x", RowBox[{"j", ",", "i"}]], ",", RowBox[{ RowBox[{"j", ">", "n"}], "&&", RowBox[{"i", "\[LessEqual]", RowBox[{"n", "-", "p"}]}]}], ",", SubscriptBox["x", RowBox[{"i", ",", "j"}]], ",", "True", ",", RowBox[{"G2", "\[LeftDoubleBracket]", RowBox[{ RowBox[{"i", "-", "n", "+", "p"}], ",", RowBox[{"j", "-", "n", "+", "p"}]}], "\[RightDoubleBracket]"}]}], "]"}], ",", RowBox[{"{", RowBox[{"i", ",", RowBox[{"n", "+", "m", "-", "p"}]}], "}"}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"n", "+", "m", "-", "p"}]}], "}"}]}], "]"}]}], "]"}]}]], "Input", CellLabel->"In[2]:=",ExpressionUUID->"484c421f-d2da-424b-8fa0-2015585eec55"], Cell[BoxData[ RowBox[{ RowBox[{"fullGlue", "[", RowBox[{"G1_", ",", "G2_", ",", "p_"}], "]"}], ":=", RowBox[{"glue", "[", RowBox[{ RowBox[{"glueGramMatrix", "[", RowBox[{"G1", ",", "G2", ",", "p"}], "]"}], ",", RowBox[{"Length", "[", "G1", "]"}], ",", RowBox[{"Length", "[", "G2", "]"}], ",", "p"}], "]"}]}]], "Input", CellChangeTimes->{ 3.832424922982353*^9, {3.832427829577507*^9, 3.8324278572062473`*^9}}, CellLabel->"In[3]:=",ExpressionUUID->"615a355b-596d-472f-94cd-927b8299d0e7"] }, Open ]], Cell[CellGroupData[{ Cell["Example", "Section", CellChangeTimes->{{3.864689099589196*^9, 3.8646891002501593`*^9}},ExpressionUUID->"53df6ed4-fea9-4d4d-9058-\ 34629f2222bd"], Cell[TextData[{ Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ SubscriptBox[ StyleBox["G", "TI"], "1"], TraditionalForm], "errors" -> {}, "input" -> "G_1", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "78d41863-8b3f-440c-b080-85e2f79cd5bc"], " and ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ SubscriptBox[ StyleBox["G", "TI"], "2"], TraditionalForm], "errors" -> {}, "input" -> "G_2", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "9bae3839-a0cd-48f4-8ad0-cb15a054d42e"], " are both gram matrices for the square pyramid, except with the square face \ in different locations to facilitate gluing." }], "Text", CellChangeTimes->{{3.864689372055653*^9, 3.8646894286541452`*^9}},ExpressionUUID->"fa0628e5-1dec-4f35-ab9d-\ 99f5ac6c30b6"], Cell[BoxData[{ RowBox[{ RowBox[{"G1", "=", "\[NoBreak]", GridBox[{ {"1", RowBox[{"-", "1"}], RowBox[{"-", "1"}], RowBox[{"-", "1"}], RowBox[{"-", "1"}]}, { RowBox[{"-", "1"}], "1", RowBox[{"-", "1"}], RowBox[{"-", "3"}], RowBox[{"-", "1"}]}, { RowBox[{"-", "1"}], RowBox[{"-", "1"}], "1", RowBox[{"-", "1"}], RowBox[{"-", "3"}]}, { RowBox[{"-", "1"}], RowBox[{"-", "3"}], RowBox[{"-", "1"}], "1", RowBox[{"-", "1"}]}, { RowBox[{"-", "1"}], RowBox[{"-", "1"}], RowBox[{"-", "3"}], RowBox[{"-", "1"}], "1"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"G2", "=", GridBox[{ {"1", RowBox[{"-", "1"}], RowBox[{"-", "3"}], RowBox[{"-", "1"}], RowBox[{"-", "1"}]}, { RowBox[{"-", "1"}], "1", RowBox[{"-", "1"}], RowBox[{"-", "3"}], RowBox[{"-", "1"}]}, { RowBox[{"-", "3"}], RowBox[{"-", "1"}], "1", RowBox[{"-", "1"}], RowBox[{"-", "1"}]}, { RowBox[{"-", "1"}], RowBox[{"-", "3"}], RowBox[{"-", "1"}], "1", RowBox[{"-", "1"}]}, { RowBox[{"-", "1"}], RowBox[{"-", "1"}], RowBox[{"-", "1"}], RowBox[{"-", "1"}], "1"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}]}], ";"}]}], "Input", CellChangeTimes->{{3.8646891073122263`*^9, 3.864689126434671*^9}}, CellLabel->"In[4]:=",ExpressionUUID->"085ac427-f46c-4dc2-aee1-130a2c0782ce"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PlanarGraph", "[", RowBox[{"AdjacencyGraph", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"If", "[", RowBox[{ RowBox[{"#", "==", RowBox[{"-", "1"}]}], ",", "1", ",", "0"}], "]"}], "&"}], "/@", "#"}], "&"}], "/@", "G1"}], ",", RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}], "]"}]], "Input", CellChangeTimes->{{3.864689212064592*^9, 3.8646892935804453`*^9}}, CellLabel->"In[6]:=",ExpressionUUID->"4bd78a12-c716-4d29-bdc5-407e1f12cb5f"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5}, {Null, SparseArray[ Automatic, {5, 5}, 0, { 1, {{0, 4, 7, 10, 13, 16}, {{2}, {3}, {4}, {5}, {1}, {3}, {5}, {1}, { 2}, {4}, {1}, {3}, {5}, {1}, {2}, {4}}}, Pattern}]}, { GraphLayout -> "TutteEmbedding", VertexLabels -> {"Name"}}]]}, TagBox[GraphicsGroupBox[{ {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{{-5.551115123125783*^-17, -2.4894981252573997`*^-17}, \ {-1.8369701987210297`*^-16, 1.}}, {{-5.551115123125783*^-17, -2.4894981252573997`*^-17}, {1., 1.2246467991473532`*^-16}}, {{-5.551115123125783*^-17, \ -2.4894981252573997`*^-17}, { 6.123233995736766*^-17, -1.}}, {{-5.551115123125783*^-17, \ -2.4894981252573997`*^-17}, {-1., -2.4492935982947064`*^-16}}, \ {{-1.8369701987210297`*^-16, 1.}, {1., 1.2246467991473532`*^-16}}, {{-1.8369701987210297`*^-16, 1.}, {-1., -2.4492935982947064`*^-16}}, {{1., 1.2246467991473532`*^-16}, {6.123233995736766*^-17, -1.}}, {{ 6.123233995736766*^-17, -1.}, {-1., -2.4492935982947064`*^-16}}}, 0.02261146496815286]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], { DiskBox[{-5.551115123125783*^-17, -2.4894981252573997*^-17}, 0.02261146496815286], InsetBox["1", {0.02238420829616007, 0.02238420829616011}, ImageScaled[{-0.030330085889910707, -0.030330085889910596}], BaseStyle->"Graphics"]}, { DiskBox[{-1.8369701987210297*^-16, 1.}, 0.02261146496815286], InsetBox["2", {-1.734723475976807*^-16, 1.031656050955414}, ImageScaled[{0.49999999999999967, -0.25}], BaseStyle->"Graphics"]}, { DiskBox[{1., 1.2246467991473532*^-16}, 0.02261146496815286], InsetBox["3", {1.031656050955414, 1.1449174941446927*^-16}, ImageScaled[{-0.25, 0.5000000000000002}], BaseStyle->"Graphics"]}, { DiskBox[{6.123233995736766*^-17, -1.}, 0.02261146496815286], InsetBox["4", {5.898059818321144*^-17, -1.031656050955414}, ImageScaled[{0.5000000000000002, 1.25}], BaseStyle->"Graphics"]}, { DiskBox[{-1., -2.4492935982947064*^-16}, 0.02261146496815286], InsetBox["5", {-1.031656050955414, -2.42861286636753*^-16}, ImageScaled[{1.25, 0.49999999999999983}], BaseStyle->"Graphics"]}}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None]], "Output", CellChangeTimes->{{3.8646892585004997`*^9, 3.864689263798737*^9}, 3.864689294022208*^9, 3.864689360006239*^9}, CellLabel->"Out[6]=",ExpressionUUID->"2ca3a7d6-f41e-4da7-8ceb-a84cbc2967c6"] }, Open ]], Cell["\<\ Gluing them together, we get the gram matrix for the octahedron, like we \ would expect.\ \>", "Text", CellChangeTimes->{{3.864690266162278*^9, 3.864690275342745*^9}, { 3.864690395967308*^9, 3.8646903992567663`*^9}},ExpressionUUID->"45891619-6e9a-4992-b24d-\ dd2f63a07314"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"G3", "=", RowBox[{"fullGlue", "[", RowBox[{"G1", ",", "G2", ",", "4"}], "]"}]}], ")"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.864689303254286*^9, 3.864689329123877*^9}}, CellLabel->"In[7]:=",ExpressionUUID->"ff61a8b9-b643-4373-bc78-6712e853ef14"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"1", RowBox[{"-", "1"}], RowBox[{"-", "1"}], RowBox[{"-", "1"}], RowBox[{"-", "1"}], RowBox[{"-", "3"}]}, { RowBox[{"-", "1"}], "1", RowBox[{"-", "1"}], RowBox[{"-", "3"}], RowBox[{"-", "1"}], RowBox[{"-", "1"}]}, { RowBox[{"-", "1"}], RowBox[{"-", "1"}], "1", RowBox[{"-", "1"}], RowBox[{"-", "3"}], RowBox[{"-", "1"}]}, { RowBox[{"-", "1"}], RowBox[{"-", "3"}], RowBox[{"-", "1"}], "1", RowBox[{"-", "1"}], RowBox[{"-", "1"}]}, { RowBox[{"-", "1"}], RowBox[{"-", "1"}], RowBox[{"-", "3"}], RowBox[{"-", "1"}], "1", RowBox[{"-", "1"}]}, { RowBox[{"-", "3"}], RowBox[{"-", "1"}], RowBox[{"-", "1"}], RowBox[{"-", "1"}], RowBox[{"-", "1"}], "1"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellChangeTimes->{{3.864689321262847*^9, 3.864689329391946*^9}, 3.8646893600631847`*^9}, CellLabel-> "Out[7]//MatrixForm=",ExpressionUUID->"7eede2f5-b773-401c-a9b3-\ 3a682dd52044"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PlanarGraph", "[", RowBox[{"AdjacencyGraph", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"If", "[", RowBox[{ RowBox[{"#", "==", RowBox[{"-", "1"}]}], ",", "1", ",", "0"}], "]"}], "&"}], "/@", "#"}], "&"}], "/@", "G3"}], ",", RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}], "]"}]], "Input", CellChangeTimes->{{3.8646893442132673`*^9, 3.864689344315606*^9}}, CellLabel->"In[8]:=",ExpressionUUID->"9f641d60-4d75-4401-888a-965f981ffe02"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6}, {Null, SparseArray[ Automatic, {6, 6}, 0, { 1, {{0, 4, 8, 12, 16, 20, 24}, {{2}, {3}, {4}, {5}, {1}, {3}, {5}, { 6}, {1}, {2}, {4}, {6}, {1}, {3}, {5}, {6}, {1}, {2}, {4}, {6}, { 2}, {3}, {4}, {5}}}, Pattern}]}, { GraphLayout -> "TutteEmbedding", VertexLabels -> {"Name"}}]]}, TagBox[GraphicsGroupBox[{ {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[CompressedData[" 1:eJxTTMoPSmVmYGDgAWImKObqmudjWblqDwMYfLBf7RPxomrba/vf/0Hg/n50 ee5wnR8rtI/Zs66Q0fk2c6c9uvzfTTzCndrH9v8wTHl4BYv8Soj5+1nA/Af7 0e1DNx9dnpB+BgaJJfJP19sdeuI/r23mSQzz0N2HLo+uH109uv3o8uj60dWj ywMAx/u+mQ== "], 0.020399597244776385`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], { DiskBox[{-1.8369701987210297*^-16, 1.}, 0.020399597244776385], InsetBox["1", {-1.734723475976807*^-16, 1.0285594361426869}, ImageScaled[{0.49999999999999967, -0.25}], BaseStyle->"Graphics"]}, { DiskBox[{0.8660254037844387, -0.4999999999999997}, 0.020399597244776385], InsetBox["2", {0.8907586010017651, -0.5142797180713432}, ImageScaled[{-0.14951905283832911, 0.8749999999999998}], BaseStyle->"Graphics"]}, { DiskBox[{0.1732073985846728, 0.10000551773978834}, 0.020399597244776385], InsetBox["3", {0.19794061426128717, 0.11428520383865937}, ImageScaled[{-0.14951953759811054, 0.12500083962982445}], BaseStyle->"Graphics"]}, { DiskBox[{-0.17320359640270758, 0.1000035333892767}, 0.020399597244776385], InsetBox["4", {-0.19793681301073188, 0.11428321787489347}, ImageScaled[{1.1495195620578873, 0.12500088199553017}], BaseStyle->"Graphics"]}, { DiskBox[{-0.8660254037844385, -0.5000000000000004}, 0.020399597244776385], InsetBox["5", {-0.8907586010017648, -0.5142797180713439}, ImageScaled[{1.149519052838329, 0.875}], BaseStyle->"Graphics"]}, { DiskBox[{9.505454913738554*^-7, -0.19999773721773378}, 0.020399597244776385], InsetBox["6", {9.408500613247717*^-7, -0.22855717336041909}, ImageScaled[{0.5000002546119084, 1.249999999999957}], BaseStyle->"Graphics"]}}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None]], "Output", CellChangeTimes->{{3.8646893447350082`*^9, 3.864689360090755*^9}}, CellLabel->"Out[8]=",ExpressionUUID->"ff3acec1-17e1-4e23-ad7a-170fe8ca3a4a"] }, Open ]] }, Open ]] }, Open ]] }, WindowSize->{665.25, 778.5}, WindowMargins->{{Automatic, 6}, {6, Automatic}}, FrontEndVersion->"13.0 for Linux x86 (64-bit) (February 4, 2022)", StyleDefinitions->"Default.nb", ExpressionUUID->"d69326ff-8541-4cab-b66d-cadeed97da21" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[580, 22, 160, 3, 98, "Title",ExpressionUUID->"c6976cd9-3620-46ab-9d1d-41139264d06c"], Cell[743, 27, 886, 14, 173, "Text",ExpressionUUID->"69f0dc3e-3370-4694-8ecf-6a022a4f5748"], Cell[CellGroupData[{ Cell[1654, 45, 151, 3, 68, "Section",ExpressionUUID->"8cc30de0-2341-4e1e-884d-b38111d69159"], Cell[1808, 50, 563, 10, 104, "Text",ExpressionUUID->"66dfbbac-8c73-460a-a03c-484d0f1ef4b6"], Cell[2374, 62, 5528, 144, 381, "Input",ExpressionUUID->"f999f2c9-b767-4605-ad2f-66ff04e65410"], Cell[7905, 208, 1653, 46, 93, "Input",ExpressionUUID->"484c421f-d2da-424b-8fa0-2015585eec55"], Cell[9561, 256, 523, 12, 51, "Input",ExpressionUUID->"615a355b-596d-472f-94cd-927b8299d0e7"] }, Open ]], Cell[CellGroupData[{ Cell[10121, 273, 154, 3, 68, "Section",ExpressionUUID->"53df6ed4-fea9-4d4d-9058-34629f2222bd"], Cell[10278, 278, 903, 23, 59, "Text",ExpressionUUID->"fa0628e5-1dec-4f35-ab9d-99f5ac6c30b6"], Cell[11184, 303, 2113, 74, 196, "Input",ExpressionUUID->"085ac427-f46c-4dc2-aee1-130a2c0782ce"], Cell[CellGroupData[{ Cell[13322, 381, 572, 16, 51, "Input",ExpressionUUID->"4bd78a12-c716-4d29-bdc5-407e1f12cb5f"], Cell[13897, 399, 2978, 56, 393, "Output",ExpressionUUID->"2ca3a7d6-f41e-4da7-8ceb-a84cbc2967c6"] }, Open ]], Cell[16890, 458, 289, 7, 35, "Text",ExpressionUUID->"45891619-6e9a-4992-b24d-dd2f63a07314"], Cell[CellGroupData[{ Cell[17204, 469, 329, 8, 29, "Input",ExpressionUUID->"ff61a8b9-b643-4373-bc78-6712e853ef14"], Cell[17536, 479, 1519, 54, 130, "Output",ExpressionUUID->"7eede2f5-b773-401c-a9b3-3a682dd52044"] }, Open ]], Cell[CellGroupData[{ Cell[19092, 538, 572, 16, 51, "Input",ExpressionUUID->"9f641d60-4d75-4401-888a-965f981ffe02"], Cell[19667, 556, 2862, 57, 343, "Output",ExpressionUUID->"ff3acec1-17e1-4e23-ad7a-170fe8ca3a4a"] }, Open ]] }, Open ]] }, Open ]] } ] *)