(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 12.2' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 39681, 984] NotebookOptionsPosition[ 35729, 927] NotebookOutlinePosition[ 36130, 943] CellTagsIndexPosition[ 36087, 940] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Get", "[", "\"\\"", "]"}]], "Input", CellChangeTimes->{{3.832151022612398*^9, 3.832151030465872*^9}, { 3.8321511379667025`*^9, 3.8321511785398226`*^9}, 3.832151627377406*^9}, CellLabel->"In[1]:=",ExpressionUUID->"414a3c9b-c835-4353-8314-610b387cd4fe"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"The currently installed versions of IGraph/M are: \"\>", "\[InvisibleSpace]", RowBox[{"{", "\<\"0.5.1\"\>", "}"}]}], SequenceForm[ "The currently installed versions of IGraph/M are: ", {"0.5.1"}], Editable->False]], "Print", CellChangeTimes->{3.8321516294929905`*^9, 3.8321792446538467`*^9, 3.8321888483607073`*^9}, CellLabel-> "During evaluation of \ In[1]:=",ExpressionUUID->"1a23cd39-3c6b-46e9-af91-4872dc234669"], Cell[BoxData[ TemplateBox[{ "System`PacletInstall", "samevers", "\"A paclet named \\!\\(\\*RowBox[{\\\"\\\\\\\"IGraphM\\\\\\\"\\\"}]\\) \ with the same version number \ (\\!\\(\\*RowBox[{\\\"\\\\\\\"0.5.1\\\\\\\"\\\"}]\\)) is already installed. \ Use PacletUninstall to remove the existing version first, or call \ PacletInstall with ForceVersionInstall -> True.\"", 2, 1, 1, 26205863351082809247, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.83217924731254*^9, 3.832188855090274*^9}, CellLabel-> "During evaluation of \ In[1]:=",ExpressionUUID->"bae63da8-d063-461c-b011-1d4ac9d01047"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"Installation failed. Please install IGraph/M manually. \"\>", "\[InvisibleSpace]", TemplateBox[{ "\"https://github.com/szhorvat/IGraphM#installation\"", "https://github.com/szhorvat/IGraphM#installation"}, "HyperlinkURL"]}], SequenceForm["Installation failed. Please install IGraph/M manually. ", Hyperlink["https://github.com/szhorvat/IGraphM#installation"]], Editable->False]], "Print", CellChangeTimes->{3.8321516294929905`*^9, 3.8321792446538467`*^9, 3.832188855122637*^9}, CellLabel-> "During evaluation of \ In[1]:=",ExpressionUUID->"f46f4636-68b0-4b87-b086-72d92dec882d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"<<", "IGraphM`"}]], "Input", CellChangeTimes->{{3.8321516420783434`*^9, 3.832151645302351*^9}}, CellLabel->"In[2]:=",ExpressionUUID->"f02af3bb-ed9d-4fb8-9ab5-418e5d718cf5"], Cell[BoxData[ TagBox[GridBox[{ {"\<\"IGraph/M 0.5.1 (October 12, 2020)\"\>"}, {"\<\"Evaluate \\!\\(\\*ButtonBox[\\\"IGDocumentation[]\\\",BaseStyle->\\\ \"Link\\\",ButtonData->\\\"paclet:IGraphM\\\"]\\) to get started.\"\>"} }, DefaultBaseStyle->"Column", GridBoxAlignment->{"Columns" -> {{Left}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], "Output", CellChangeTimes->{3.8321516533863616`*^9, 3.832179248194338*^9, 3.832188856442923*^9}, CellLabel->"Out[2]=",ExpressionUUID->"3c9be348-6ed8-4a06-91b2-f14112004d3f"] }, Open ]], Cell[BoxData[ RowBox[{"IGDocumentation", "[", "]"}]], "Input", CellChangeTimes->{{3.8321516567464046`*^9, 3.8321516618620677`*^9}}, CellLabel->"In[3]:=",ExpressionUUID->"736a6582-d513-4fda-84ed-908eb2a7766f"], Cell["Takes adjacency matrix and spits out graph", "Text", CellChangeTimes->{{3.832168668844531*^9, 3.832168674438282*^9}},ExpressionUUID->"9fb785ee-e560-44c5-a5b3-\ 5327bd61a726"], Cell[BoxData[ RowBox[{ RowBox[{"pgraph", "[", "adjmat_", "]"}], ":=", RowBox[{"PlanarGraph", "[", RowBox[{"AdjacencyGraph", "[", RowBox[{"adjmat", ",", RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}], "]"}]}]], "Input", CellChangeTimes->{{3.832157015635466*^9, 3.832157026317275*^9}, { 3.8321570768087626`*^9, 3.832157187087782*^9}, {3.832157260817*^9, 3.832157281243805*^9}, {3.83215738072911*^9, 3.832157439845132*^9}, { 3.8321578106356897`*^9, 3.8321578374593196`*^9}, {3.8321581875796967`*^9, 3.832158191258052*^9}}, CellLabel->"In[4]:=",ExpressionUUID->"7e4471aa-3419-4361-9954-ca85e8fdbcea"], Cell["Takes adjacency matrix and spits out dual graph", "Text", CellChangeTimes->{{3.832168678589355*^9, 3.8321686862740602`*^9}},ExpressionUUID->"9974cf68-13cb-4621-b559-\ 180b9188b28d"], Cell[BoxData[ RowBox[{ RowBox[{"dgraph", "[", "adjmat_", "]"}], ":=", RowBox[{"PlanarGraph", "[", RowBox[{"IGDualGraph", "[", RowBox[{ RowBox[{"pgraph", "[", "adjmat", "]"}], ",", RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}], "]"}]}]], "Input", CellChangeTimes->{{3.832157448820382*^9, 3.832157476669551*^9}, { 3.832157847353641*^9, 3.832157909605048*^9}, {3.83215819890162*^9, 3.832158204194887*^9}}, CellLabel->"In[5]:=",ExpressionUUID->"64960a86-3c40-410a-a0bf-67dc0dda7253"], Cell["Takes adjacency matrix and spits out dual adjacency matrix", "Text", CellChangeTimes->{{3.832168708906446*^9, 3.8321687487149277`*^9}},ExpressionUUID->"368224c4-3094-4b81-8a24-\ 52920579e0af"], Cell[BoxData[ RowBox[{ RowBox[{"dadjmat", "[", "adjmat_", "]"}], ":=", RowBox[{"Normal", "[", RowBox[{"AdjacencyMatrix", "[", RowBox[{"dgraph", "[", "adjmat", "]"}], "]"}], "]"}]}]], "Input", CellChangeTimes->{{3.8321574651675024`*^9, 3.8321575207418165`*^9}, { 3.832157919355533*^9, 3.832157942375414*^9}}, CellLabel->"In[6]:=",ExpressionUUID->"2df0273a-68b0-4420-a181-5533de3142ef"], Cell["\<\ Takes adjacency matrix, graph, dual adjacency matrix, and dual graph and \ spits out extended gram matrix\ \>", "Text", CellChangeTimes->{{3.83216876403542*^9, 3.8321687827716303`*^9}},ExpressionUUID->"d7357423-e955-4cba-b0ba-\ acc9d2b7e0e5"], Cell[BoxData[ RowBox[{ RowBox[{"exGmat", "[", RowBox[{"adjmat_", ",", "adjmatg_", ",", "adjmatd_", ",", "adjmatdg_"}], "]"}], ":=", RowBox[{"ArrayFlatten", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"If", "[", RowBox[{ RowBox[{"i", "==", "j"}], ",", "1", ",", RowBox[{"If", "[", RowBox[{ RowBox[{ RowBox[{"adjmat", "[", RowBox[{"[", RowBox[{"i", ",", "j"}], "]"}], "]"}], "==", "1"}], ",", RowBox[{"-", "1"}], ",", RowBox[{"If", "[", RowBox[{ RowBox[{"i", ">", "j"}], ",", SubscriptBox["b", RowBox[{"j", ",", "i"}]], ",", SubscriptBox["b", RowBox[{"i", ",", "j"}]]}], "]"}]}], "]"}]}], "]"}], ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", RowBox[{"VertexCount", "[", "adjmatg", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"j", ",", "1", ",", RowBox[{"VertexCount", "[", "adjmatg", "]"}]}], "}"}]}], "]"}], ",", RowBox[{"Table", "[", RowBox[{ RowBox[{"If", "[", RowBox[{ RowBox[{"MemberQ", "[", RowBox[{ RowBox[{ RowBox[{"IGFaces", "[", "adjmatg", "]"}], "[", RowBox[{"[", "j", "]"}], "]"}], ",", "i"}], "]"}], ",", "0", ",", SubscriptBox["b", RowBox[{"i", ",", RowBox[{"j", "+", RowBox[{"VertexCount", "[", "adjmatg", "]"}]}]}]]}], "]"}], ",", RowBox[{"{", RowBox[{"i", ",", RowBox[{"VertexCount", "[", "adjmatg", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"VertexCount", "[", "adjmatdg", "]"}]}], "}"}]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"Transpose", "[", RowBox[{"Table", "[", RowBox[{ RowBox[{"If", "[", RowBox[{ RowBox[{"MemberQ", "[", RowBox[{ RowBox[{ RowBox[{"IGFaces", "[", "adjmatg", "]"}], "[", RowBox[{"[", "j", "]"}], "]"}], ",", "i"}], "]"}], ",", "0", ",", SubscriptBox["b", RowBox[{"i", ",", RowBox[{"j", "+", RowBox[{"VertexCount", "[", "adjmatg", "]"}]}]}]]}], "]"}], ",", RowBox[{"{", RowBox[{"i", ",", RowBox[{"VertexCount", "[", "adjmatg", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"VertexCount", "[", "adjmatdg", "]"}]}], "}"}]}], "]"}], "]"}], ",", RowBox[{"Table", "[", RowBox[{ RowBox[{"If", "[", RowBox[{ RowBox[{"i", "==", "j"}], ",", "1", ",", RowBox[{"If", "[", RowBox[{ RowBox[{ RowBox[{"adjmatd", "[", RowBox[{"[", RowBox[{"i", ",", "j"}], "]"}], "]"}], "==", "1"}], ",", RowBox[{"-", "1"}], ",", RowBox[{"If", "[", RowBox[{ RowBox[{"i", ">", "j"}], ",", SubscriptBox["b", RowBox[{ RowBox[{"j", "+", RowBox[{"VertexCount", "[", "adjmatg", "]"}]}], ",", RowBox[{"i", "+", RowBox[{"VertexCount", "[", "adjmatg", "]"}]}]}]], ",", SubscriptBox["b", RowBox[{ RowBox[{"i", "+", RowBox[{"VertexCount", "[", "adjmatg", "]"}]}], ",", RowBox[{"j", "+", RowBox[{"VertexCount", "[", "adjmatg", "]"}]}]}]]}], "]"}]}], "]"}]}], "]"}], ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", RowBox[{"VertexCount", "[", "adjmatdg", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"j", ",", "1", ",", RowBox[{"VertexCount", "[", "adjmatdg", "]"}]}], "}"}]}], "]"}]}], "}"}]}], "}"}], "]"}]}]], "Input", CellChangeTimes->{{3.8321575269876523`*^9, 3.8321576763644238`*^9}, { 3.832159927387419*^9, 3.8321599288063574`*^9}, {3.832178568505596*^9, 3.8321785886368113`*^9}}, CellLabel->"In[7]:=",ExpressionUUID->"466eedf4-1501-4c34-b467-6afcd6ee9c2b"], Cell["\<\ Computes entire extended gram matrix just given adjacency graph\ \>", "Text", CellChangeTimes->{{3.8321688139423647`*^9, 3.832168826282061*^9}},ExpressionUUID->"4ea56a77-27f9-4776-93c6-\ 8db6873f4f90"], Cell[BoxData[ RowBox[{ RowBox[{"fullExGmat", "[", "adjmat_", "]"}], ":=", RowBox[{"exGmat", "[", RowBox[{"adjmat", ",", RowBox[{"pgraph", "[", "adjmat", "]"}], ",", RowBox[{"dadjmat", "[", "adjmat", "]"}], ",", RowBox[{"dgraph", "[", "adjmat", "]"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.832159893936446*^9, 3.832159919205484*^9}, 3.832159950380535*^9, {3.832168786146203*^9, 3.832168807346489*^9}}, CellLabel->"In[8]:=",ExpressionUUID->"07904a6d-75de-42b6-bd6e-25258c9dfc13"], Cell[TextData[{ "Dylan\[CloseCurlyQuote]s formula: computes ", Cell[BoxData[ FormBox[ SubscriptBox["\[Alpha]", RowBox[{"i", ",", "j"}]], TraditionalForm]], FormatType->TraditionalForm,ExpressionUUID-> "b3c7d5f4-d091-4a74-aebc-91ee5194a0e1"], " given all bilinear forms between two tangent circles, c1 and c2, and their \ shared dual circle d" }], "Text", CellChangeTimes->{{3.832178377907075*^9, 3.832178410699369*^9}, { 3.832178594854447*^9, 3.8321785952028008`*^9}, {3.83217891353088*^9, 3.832178922038512*^9}, {3.832178990238923*^9, 3.83217902018289*^9}},ExpressionUUID->"551f2841-8783-4e7e-8126-\ fa2d7423c031"], Cell[BoxData[ RowBox[{ RowBox[{"dylanFormula", "[", RowBox[{"i_", ",", "j_", ",", "c1_", ",", "c2_", ",", "d_"}], "]"}], ":=", RowBox[{ RowBox[{ RowBox[{"d", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], RowBox[{"d", "\[LeftDoubleBracket]", "j", "\[RightDoubleBracket]"}]}], "+", RowBox[{ RowBox[{"c2", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], RowBox[{"c2", "\[LeftDoubleBracket]", "j", "\[RightDoubleBracket]"}]}], "-", RowBox[{ FractionBox["1", "2"], RowBox[{"(", RowBox[{ RowBox[{ FractionBox[ RowBox[{ SuperscriptBox[ RowBox[{"d", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "2"], "+", SuperscriptBox[ RowBox[{ "c2", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "2"], "-", "1"}], RowBox[{ RowBox[{"c1", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "+", RowBox[{ "c2", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}]}]], RowBox[{"(", RowBox[{ RowBox[{"c1", "\[LeftDoubleBracket]", "j", "\[RightDoubleBracket]"}], "+", RowBox[{ "c2", "\[LeftDoubleBracket]", "j", "\[RightDoubleBracket]"}]}], ")"}]}], "+", RowBox[{ FractionBox[ RowBox[{ SuperscriptBox[ RowBox[{"d", "\[LeftDoubleBracket]", "j", "\[RightDoubleBracket]"}], "2"], "+", SuperscriptBox[ RowBox[{ "c2", "\[LeftDoubleBracket]", "j", "\[RightDoubleBracket]"}], "2"], "-", "1"}], RowBox[{ RowBox[{"c1", "\[LeftDoubleBracket]", "j", "\[RightDoubleBracket]"}], "+", RowBox[{ "c2", "\[LeftDoubleBracket]", "j", "\[RightDoubleBracket]"}]}]], RowBox[{"(", RowBox[{ RowBox[{"c1", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}], "+", RowBox[{ "c2", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}]}], ")"}]}]}], ")"}]}]}]}]], "Input", CellChangeTimes->{{3.8321784141799994`*^9, 3.832178465721493*^9}, { 3.83217860325821*^9, 3.832178655554688*^9}, {3.83217875635993*^9, 3.832178873607215*^9}}, CellLabel->"In[9]:=",ExpressionUUID->"bf8ef1f1-47be-4283-b703-c185b6f0b640"], Cell["\<\ Uses Dylan\[CloseCurlyQuote]s formula and the extended gram matrix to create \ the equations\ \>", "Text", CellChangeTimes->{{3.832188658163759*^9, 3.832188667687117*^9}},ExpressionUUID->"40d5a3ff-8fe6-48ac-bfbe-\ 6a97c5e28c14"], Cell[BoxData[ RowBox[{ RowBox[{"eqs", "[", RowBox[{"i_", ",", "j_", ",", "c1_", ",", "c2_", ",", "d_", ",", "Gext_"}], "]"}], ":=", RowBox[{ RowBox[{"dylanFormula", "[", RowBox[{"i", ",", "j", ",", "c1", ",", "c2", ",", "d"}], "]"}], "\[Equal]", RowBox[{"Gext", "\[LeftDoubleBracket]", RowBox[{"i", ",", "j"}], "\[RightDoubleBracket]"}]}]}]], "Input", CellChangeTimes->{{3.832179077629673*^9, 3.832179079427682*^9}, { 3.8321791928839073`*^9, 3.832179236666037*^9}}, CellLabel->"In[10]:=",ExpressionUUID->"420e0d3e-8926-42c8-bf5b-90e13c9517d3"], Cell["Creates a list of all relevant variables", "Text", CellChangeTimes->{{3.832188674746522*^9, 3.832188679399398*^9}},ExpressionUUID->"48590ebf-9c87-4ec4-bfbf-\ 27e74718b29f"], Cell[BoxData[ RowBox[{ RowBox[{"allVars", "[", RowBox[{"n_", ",", "m_"}], "]"}], ":=", RowBox[{"Flatten", "[", RowBox[{"Table", "[", RowBox[{ SubscriptBox["b", RowBox[{"i", ",", "j"}]], ",", RowBox[{"{", RowBox[{"i", ",", RowBox[{"n", "+", "m"}]}], "}"}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"i", "+", "1"}], ",", RowBox[{"n", "+", "m"}]}], "}"}]}], "]"}], "]"}]}]], "Input", CellChangeTimes->{{3.832180251879418*^9, 3.832180286404707*^9}, { 3.83218032560913*^9, 3.832180334849931*^9}}, CellLabel->"In[11]:=",ExpressionUUID->"6be67f5a-9ae0-4ab1-a49b-076a5355b7fb"], Cell["\<\ Given the adjacency matrix and which three rows/columns to pick (I\ \[CloseCurlyQuote]d like to eventually automate this; should be pretty easy), \ gives the extended Gram matrix. Ignore the warnings, everything actually works. Also we still have the \ problem with that one other face, but should be fairly easy to fix tomorrow.\ \>", "Text", CellChangeTimes->{{3.832188684680435*^9, 3.832188781650333*^9}},ExpressionUUID->"5352eb21-29c8-493a-98a4-\ 6ede330dc961"], Cell[BoxData[ RowBox[{ RowBox[{"findGextGivenAdjacency", "[", RowBox[{"adjmat_", ",", "c1_", ",", "c2_", ",", "d_"}], "]"}], ":=", RowBox[{"Block", "[", RowBox[{ RowBox[{"{", RowBox[{ "Gext", ",", "c1s", ",", "c2s", ",", "ds", ",", "n", ",", "m", ",", "rules", ",", "assumptions"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"n", "=", RowBox[{"Length", "[", "adjmat", "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"m", "=", RowBox[{"Length", "[", RowBox[{"dadjmat", "[", "adjmat", "]"}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"Gext", "=", RowBox[{"fullExGmat", "[", "adjmat", "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"c1s", "=", RowBox[{"Gext", "\[LeftDoubleBracket]", RowBox[{"All", ",", "c1"}], "\[RightDoubleBracket]"}]}], ";", "\[IndentingNewLine]", RowBox[{"c2s", "=", RowBox[{"Gext", "\[LeftDoubleBracket]", RowBox[{"All", ",", "c2"}], "\[RightDoubleBracket]"}]}], ";", "\[IndentingNewLine]", RowBox[{"ds", "=", RowBox[{"Gext", "\[LeftDoubleBracket]", RowBox[{"All", ",", "d"}], "\[RightDoubleBracket]"}]}], ";", "\[IndentingNewLine]", RowBox[{"assumptions", "=", RowBox[{ RowBox[{ RowBox[{"#", "\[LessEqual]", "0"}], "&"}], "/@", RowBox[{"allVars", "[", RowBox[{"n", ",", "m"}], "]"}]}]}], ";", "\[IndentingNewLine]", RowBox[{"rules", "=", RowBox[{ RowBox[{"Solve", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"Flatten", "[", RowBox[{"Table", "[", RowBox[{ RowBox[{"eqs", "[", RowBox[{ "i", ",", "j", ",", "c1s", ",", "c2s", ",", "ds", ",", "Gext"}], "]"}], ",", RowBox[{"{", RowBox[{"i", ",", RowBox[{"n", "+", "m"}]}], "}"}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"n", "+", "m"}]}], "}"}]}], "]"}], "]"}], "//", RowBox[{"DeleteCases", "[", RowBox[{"Indeterminate", "\[Equal]", "__"}], "]"}]}], "//", "Simplify"}], "//", RowBox[{"DeleteCases", "[", "True", "]"}]}], ",", RowBox[{"Assumptions", "\[Rule]", "assumptions"}]}], "]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}]}], ";", "\[IndentingNewLine]", RowBox[{"Gext", "/.", "rules"}]}]}], "]"}]}]], "Input", CellChangeTimes->{{3.832179291894788*^9, 3.832179514217531*^9}, { 3.83217965960777*^9, 3.8321797806519737`*^9}, {3.832182725009789*^9, 3.832182755832143*^9}, {3.83218306930501*^9, 3.832183092163796*^9}, { 3.8321832829376574`*^9, 3.832183288927372*^9}, {3.832183458386508*^9, 3.832183458902268*^9}, {3.8321835024578123`*^9, 3.832183505021721*^9}, { 3.8321835733949423`*^9, 3.832183603990161*^9}, {3.832184046631289*^9, 3.832184063346572*^9}, 3.832184140028371*^9, {3.8321842002796173`*^9, 3.832184205781186*^9}, 3.832184290558262*^9, 3.832185122942072*^9, { 3.8321858451050043`*^9, 3.832185942387307*^9}, {3.832186018520791*^9, 3.832186052360086*^9}, {3.832186094120708*^9, 3.8321861420031347`*^9}, { 3.832186175260569*^9, 3.832186201772645*^9}, {3.832186235325078*^9, 3.8321862618199997`*^9}, {3.8321863613697853`*^9, 3.8321863669835577`*^9}, {3.832186452371193*^9, 3.832186456250992*^9}}, CellLabel->"In[12]:=",ExpressionUUID->"f4f2f39c-a979-492f-a025-beb69389c674"], Cell["Same as above, but numerically approximates it.", "Text", CellChangeTimes->{{3.832188787533435*^9, 3.832188795439991*^9}},ExpressionUUID->"d96df70c-f12c-4947-8ff1-\ cf67a6e8d5f1"], Cell[BoxData[ RowBox[{ RowBox[{"findGextGivenAdjacencyN", "[", RowBox[{"adjmat_", ",", "c1_", ",", "c2_", ",", "d_"}], "]"}], ":=", RowBox[{"Block", "[", RowBox[{ RowBox[{"{", RowBox[{ "Gext", ",", "c1s", ",", "c2s", ",", "ds", ",", "n", ",", "m", ",", "rules", ",", "assumptions"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"n", "=", RowBox[{"Length", "[", "adjmat", "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"m", "=", RowBox[{"Length", "[", RowBox[{"dadjmat", "[", "adjmat", "]"}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"Gext", "=", RowBox[{"fullExGmat", "[", "adjmat", "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"c1s", "=", RowBox[{"Gext", "\[LeftDoubleBracket]", RowBox[{"All", ",", "c1"}], "\[RightDoubleBracket]"}]}], ";", "\[IndentingNewLine]", RowBox[{"c2s", "=", RowBox[{"Gext", "\[LeftDoubleBracket]", RowBox[{"All", ",", "c2"}], "\[RightDoubleBracket]"}]}], ";", "\[IndentingNewLine]", RowBox[{"ds", "=", RowBox[{"Gext", "\[LeftDoubleBracket]", RowBox[{"All", ",", "d"}], "\[RightDoubleBracket]"}]}], ";", "\[IndentingNewLine]", RowBox[{"assumptions", "=", RowBox[{ RowBox[{ RowBox[{"#", "\[LessEqual]", "0"}], "&"}], "/@", RowBox[{"allVars", "[", RowBox[{"n", ",", "m"}], "]"}]}]}], ";", "\[IndentingNewLine]", RowBox[{"rules", "=", RowBox[{"NSolve", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"Flatten", "[", RowBox[{"Table", "[", RowBox[{ RowBox[{"eqs", "[", RowBox[{ "i", ",", "j", ",", "c1s", ",", "c2s", ",", "ds", ",", "Gext"}], "]"}], ",", RowBox[{"{", RowBox[{"i", ",", RowBox[{"n", "+", "m"}]}], "}"}], ",", RowBox[{"{", RowBox[{"j", ",", RowBox[{"n", "+", "m"}]}], "}"}]}], "]"}], "]"}], "//", RowBox[{"DeleteCases", "[", RowBox[{"Indeterminate", "\[Equal]", "__"}], "]"}]}], "//", "Simplify"}], "//", RowBox[{"DeleteCases", "[", "True", "]"}]}], ",", "Reals"}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{ RowBox[{"Select", "[", RowBox[{ RowBox[{"Gext", "/.", "rules"}], ",", RowBox[{ RowBox[{"AllTrue", "[", RowBox[{"#", ",", RowBox[{ RowBox[{ RowBox[{"#", "\[LessEqual]", "0"}], "||", RowBox[{"#", "\[Equal]", "1"}], "||", RowBox[{"SameQ", "[", RowBox[{ RowBox[{"Head", "[", "#", "]"}], ",", "Subscript"}], "]"}]}], "&"}], ",", "2"}], "]"}], "&"}]}], "]"}], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}]}]}], "]"}]}]], "Input", CellChangeTimes->{{3.8321863796375513`*^9, 3.832186447086238*^9}, { 3.832186612097026*^9, 3.832186638550942*^9}, {3.832186914043337*^9, 3.832186922217325*^9}, {3.832187020117702*^9, 3.832187021912196*^9}, { 3.8321871707702923`*^9, 3.8321871736438*^9}, {3.8321877632435617`*^9, 3.832187771381138*^9}, {3.83218786469829*^9, 3.832187868963749*^9}}, CellLabel->"In[13]:=",ExpressionUUID->"e9aabedc-e11e-4cce-a76e-c710d3384ca9"], Cell["Example usage. This is the square pyramid.", "Text", CellChangeTimes->{{3.832188805201276*^9, 3.8321888300331697`*^9}},ExpressionUUID->"f2486377-4c48-4788-b4f2-\ 4a8d1780f87e"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"findGextGivenAdjacency", "[", RowBox[{GridBox[{ {"0", "1", "1", "1", "1"}, {"1", "0", "1", "0", "1"}, {"1", "1", "0", "1", "0"}, {"1", "0", "1", "0", "1"}, {"1", "1", "0", "1", "0"} }], ",", "1", ",", "2", ",", "6"}], "]"}], "//", "MatrixForm"}]], "Input",\ CellChangeTimes->{{3.8321795177164*^9, 3.83217952091615*^9}, { 3.832179604052969*^9, 3.83217964535808*^9}, {3.832179812603285*^9, 3.83217989257692*^9}, {3.832182603982696*^9, 3.832182604549707*^9}, { 3.8321828395592403`*^9, 3.832182841112955*^9}, {3.832182959883296*^9, 3.83218298064507*^9}, {3.8321830977278214`*^9, 3.832183138998757*^9}, { 3.832183230730062*^9, 3.832183292328827*^9}, {3.832183519680952*^9, 3.8321835213661003`*^9}, {3.832183609148136*^9, 3.8321836229774103`*^9}, { 3.8321862070609922`*^9, 3.832186218032998*^9}, {3.832186249390174*^9, 3.832186256142555*^9}, {3.8321863924121113`*^9, 3.8321864066698523`*^9}}, CellLabel->"In[14]:=",ExpressionUUID->"43731109-f22e-4624-b7f9-248becc79bba"], Cell[BoxData[ TemplateBox[{ "Power", "infy", "\"Infinite expression \\!\\(\\*FractionBox[\\\"1\\\", \\\"0\\\"]\\) \ encountered.\"", 2, 14, 2, 26205863351082809247, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{ 3.832182763093258*^9, 3.832182841541271*^9, 3.832182981310091*^9, { 3.832183101347535*^9, 3.8321831394150257`*^9}, {3.832183231556478*^9, 3.832183293258604*^9}, {3.8321835084041348`*^9, 3.8321835219952707`*^9}, { 3.832183610774363*^9, 3.832183624231565*^9}, 3.8321860021042147`*^9, 3.8321860748628817`*^9, 3.832186146263523*^9, {3.832186194392118*^9, 3.832186256895705*^9}, {3.83218639372544*^9, 3.832186459711775*^9}, 3.832188871475355*^9}, CellLabel-> "During evaluation of \ In[14]:=",ExpressionUUID->"abf371ca-58c8-4795-ab0f-e48019017a57"], Cell[BoxData[ TemplateBox[{ "Infinity", "indet", "\"Indeterminate expression \\!\\(\\*RowBox[{\\\"0\\\", \\\" \\\", \ \\\"ComplexInfinity\\\"}]\\) encountered.\"", 2, 14, 3, 26205863351082809247, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{ 3.832182763093258*^9, 3.832182841541271*^9, 3.832182981310091*^9, { 3.832183101347535*^9, 3.8321831394150257`*^9}, {3.832183231556478*^9, 3.832183293258604*^9}, {3.8321835084041348`*^9, 3.8321835219952707`*^9}, { 3.832183610774363*^9, 3.832183624231565*^9}, 3.8321860021042147`*^9, 3.8321860748628817`*^9, 3.832186146263523*^9, {3.832186194392118*^9, 3.832186256895705*^9}, {3.83218639372544*^9, 3.832186459711775*^9}, 3.832188871525887*^9}, CellLabel-> "During evaluation of \ In[14]:=",ExpressionUUID->"6add42d7-9b06-4c10-b557-2a4f82586ba9"], Cell[BoxData[ TemplateBox[{ "Power", "infy", "\"Infinite expression \\!\\(\\*FractionBox[\\\"1\\\", \\\"0\\\"]\\) \ encountered.\"", 2, 14, 4, 26205863351082809247, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{ 3.832182763093258*^9, 3.832182841541271*^9, 3.832182981310091*^9, { 3.832183101347535*^9, 3.8321831394150257`*^9}, {3.832183231556478*^9, 3.832183293258604*^9}, {3.8321835084041348`*^9, 3.8321835219952707`*^9}, { 3.832183610774363*^9, 3.832183624231565*^9}, 3.8321860021042147`*^9, 3.8321860748628817`*^9, 3.832186146263523*^9, {3.832186194392118*^9, 3.832186256895705*^9}, {3.83218639372544*^9, 3.832186459711775*^9}, 3.832188871530574*^9}, CellLabel-> "During evaluation of \ In[14]:=",ExpressionUUID->"c448ec90-71ed-4414-87d6-2ebcfc80ff50"], Cell[BoxData[ TemplateBox[{ "Infinity", "indet", "\"Indeterminate expression \\!\\(\\*RowBox[{\\\"0\\\", \\\" \\\", \ \\\"ComplexInfinity\\\"}]\\) encountered.\"", 2, 14, 5, 26205863351082809247, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{ 3.832182763093258*^9, 3.832182841541271*^9, 3.832182981310091*^9, { 3.832183101347535*^9, 3.8321831394150257`*^9}, {3.832183231556478*^9, 3.832183293258604*^9}, {3.8321835084041348`*^9, 3.8321835219952707`*^9}, { 3.832183610774363*^9, 3.832183624231565*^9}, 3.8321860021042147`*^9, 3.8321860748628817`*^9, 3.832186146263523*^9, {3.832186194392118*^9, 3.832186256895705*^9}, {3.83218639372544*^9, 3.832186459711775*^9}, 3.83218887153388*^9}, CellLabel-> "During evaluation of \ In[14]:=",ExpressionUUID->"893b7a4c-10f0-4db4-b378-e5c8025a0194"], Cell[BoxData[ TemplateBox[{ "Power", "infy", "\"Infinite expression \\!\\(\\*FractionBox[\\\"1\\\", \\\"0\\\"]\\) \ encountered.\"", 2, 14, 6, 26205863351082809247, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{ 3.832182763093258*^9, 3.832182841541271*^9, 3.832182981310091*^9, { 3.832183101347535*^9, 3.8321831394150257`*^9}, {3.832183231556478*^9, 3.832183293258604*^9}, {3.8321835084041348`*^9, 3.8321835219952707`*^9}, { 3.832183610774363*^9, 3.832183624231565*^9}, 3.8321860021042147`*^9, 3.8321860748628817`*^9, 3.832186146263523*^9, {3.832186194392118*^9, 3.832186256895705*^9}, {3.83218639372544*^9, 3.832186459711775*^9}, 3.832188871537026*^9}, CellLabel-> "During evaluation of \ In[14]:=",ExpressionUUID->"dcb27786-57db-461d-ac79-fd078991427f"], Cell[BoxData[ TemplateBox[{ "General", "stop", "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"Power\\\", \\\"::\\\", \ \\\"infy\\\"}], \\\"MessageName\\\"]\\) will be suppressed during this \ calculation.\"", 2, 14, 7, 26205863351082809247, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{ 3.832182763093258*^9, 3.832182841541271*^9, 3.832182981310091*^9, { 3.832183101347535*^9, 3.8321831394150257`*^9}, {3.832183231556478*^9, 3.832183293258604*^9}, {3.8321835084041348`*^9, 3.8321835219952707`*^9}, { 3.832183610774363*^9, 3.832183624231565*^9}, 3.8321860021042147`*^9, 3.8321860748628817`*^9, 3.832186146263523*^9, {3.832186194392118*^9, 3.832186256895705*^9}, {3.83218639372544*^9, 3.832186459711775*^9}, 3.832188871540209*^9}, CellLabel-> "During evaluation of \ In[14]:=",ExpressionUUID->"3a8edaa3-2098-4fae-90bf-c5ed1c1dbaca"], Cell[BoxData[ TemplateBox[{ "Infinity", "indet", "\"Indeterminate expression \\!\\(\\*RowBox[{\\\"0\\\", \\\" \\\", \ \\\"ComplexInfinity\\\"}]\\) encountered.\"", 2, 14, 8, 26205863351082809247, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{ 3.832182763093258*^9, 3.832182841541271*^9, 3.832182981310091*^9, { 3.832183101347535*^9, 3.8321831394150257`*^9}, {3.832183231556478*^9, 3.832183293258604*^9}, {3.8321835084041348`*^9, 3.8321835219952707`*^9}, { 3.832183610774363*^9, 3.832183624231565*^9}, 3.8321860021042147`*^9, 3.8321860748628817`*^9, 3.832186146263523*^9, {3.832186194392118*^9, 3.832186256895705*^9}, {3.83218639372544*^9, 3.832186459711775*^9}, 3.832188871543989*^9}, CellLabel-> "During evaluation of \ In[14]:=",ExpressionUUID->"49a1ecea-4871-4d96-9dd2-729e5b68d5e3"], Cell[BoxData[ TemplateBox[{ "General", "stop", "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"Infinity\\\", \ \\\"::\\\", \\\"indet\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ during this calculation.\"", 2, 14, 9, 26205863351082809247, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{ 3.832182763093258*^9, 3.832182841541271*^9, 3.832182981310091*^9, { 3.832183101347535*^9, 3.8321831394150257`*^9}, {3.832183231556478*^9, 3.832183293258604*^9}, {3.8321835084041348`*^9, 3.8321835219952707`*^9}, { 3.832183610774363*^9, 3.832183624231565*^9}, 3.8321860021042147`*^9, 3.8321860748628817`*^9, 3.832186146263523*^9, {3.832186194392118*^9, 3.832186256895705*^9}, {3.83218639372544*^9, 3.832186459711775*^9}, 3.83218887154858*^9}, CellLabel-> "During evaluation of \ In[14]:=",ExpressionUUID->"847c3f1b-76bf-40e2-9240-01d923bac6b5"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"1", RowBox[{"-", "1"}], RowBox[{"-", "1"}], RowBox[{"-", "1"}], RowBox[{"-", "1"}], "0", "0", "0", "0", RowBox[{"-", SqrtBox["2"]}]}, { RowBox[{"-", "1"}], "1", RowBox[{"-", "1"}], RowBox[{"-", "3"}], RowBox[{"-", "1"}], "0", RowBox[{ RowBox[{"-", "2"}], " ", SqrtBox["2"]}], RowBox[{ RowBox[{"-", "2"}], " ", SqrtBox["2"]}], "0", "0"}, { RowBox[{"-", "1"}], RowBox[{"-", "1"}], "1", RowBox[{"-", "1"}], RowBox[{"-", "3"}], "0", "0", RowBox[{ RowBox[{"-", "2"}], " ", SqrtBox["2"]}], SubscriptBox["b", RowBox[{"3", ",", "9"}]], "0"}, { RowBox[{"-", "1"}], RowBox[{"-", "3"}], RowBox[{"-", "1"}], "1", RowBox[{"-", "1"}], RowBox[{ RowBox[{"-", "2"}], " ", SqrtBox["2"]}], "0", "0", SubscriptBox["b", RowBox[{"4", ",", "9"}]], "0"}, { RowBox[{"-", "1"}], RowBox[{"-", "1"}], RowBox[{"-", "3"}], RowBox[{"-", "1"}], "1", RowBox[{ RowBox[{"-", "2"}], " ", SqrtBox["2"]}], RowBox[{ RowBox[{"-", "2"}], " ", SqrtBox["2"]}], "0", "0", "0"}, {"0", "0", "0", RowBox[{ RowBox[{"-", "2"}], " ", SqrtBox["2"]}], RowBox[{ RowBox[{"-", "2"}], " ", SqrtBox["2"]}], "1", RowBox[{"-", "1"}], RowBox[{"-", "3"}], RowBox[{"-", "1"}], RowBox[{"-", "1"}]}, {"0", RowBox[{ RowBox[{"-", "2"}], " ", SqrtBox["2"]}], "0", "0", RowBox[{ RowBox[{"-", "2"}], " ", SqrtBox["2"]}], RowBox[{"-", "1"}], "1", RowBox[{"-", "1"}], SubscriptBox["b", RowBox[{"7", ",", "9"}]], RowBox[{"-", "1"}]}, {"0", RowBox[{ RowBox[{"-", "2"}], " ", SqrtBox["2"]}], RowBox[{ RowBox[{"-", "2"}], " ", SqrtBox["2"]}], "0", "0", RowBox[{"-", "3"}], RowBox[{"-", "1"}], "1", RowBox[{"-", "1"}], RowBox[{"-", "1"}]}, {"0", "0", SubscriptBox["b", RowBox[{"3", ",", "9"}]], SubscriptBox["b", RowBox[{"4", ",", "9"}]], "0", RowBox[{"-", "1"}], SubscriptBox["b", RowBox[{"7", ",", "9"}]], RowBox[{"-", "1"}], "1", RowBox[{"-", "1"}]}, { RowBox[{"-", SqrtBox["2"]}], "0", "0", "0", "0", RowBox[{"-", "1"}], RowBox[{"-", "1"}], RowBox[{"-", "1"}], RowBox[{"-", "1"}], "1"} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellChangeTimes->{ 3.832179783917717*^9, {3.832179814342978*^9, 3.832179861361418*^9}, 3.832179893589129*^9, 3.832182605794438*^9, 3.832182763127335*^9, 3.832182841690147*^9, 3.8321829813444138`*^9, {3.832183101533333*^9, 3.832183139582876*^9}, {3.8321832317345877`*^9, 3.832183293439227*^9}, { 3.832183508587723*^9, 3.8321835221677103`*^9}, {3.832183611364024*^9, 3.832183624318857*^9}, 3.832186002187941*^9, 3.832186074905888*^9, 3.832186146315591*^9, {3.832186194447332*^9, 3.832186256956686*^9}, { 3.832186393788492*^9, 3.832186459760105*^9}, 3.8321888717648478`*^9}, CellLabel-> "Out[14]//MatrixForm=",ExpressionUUID->"ef7c1c2b-723d-47fb-86e2-\ c32b58b8897d"] }, Open ]] }, WindowSize->{1428., 779.25}, WindowMargins->{{4.5, Automatic}, {7.5, Automatic}}, FrontEndVersion->"12.2 for Linux x86 (64-bit) (December 12, 2020)", StyleDefinitions->"Default.nb", ExpressionUUID->"8df4a218-f4b3-4aa1-ac74-2935a02f7ddc" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[580, 22, 359, 6, 29, "Input",ExpressionUUID->"414a3c9b-c835-4353-8314-610b387cd4fe"], Cell[942, 30, 486, 12, 23, "Print",ExpressionUUID->"1a23cd39-3c6b-46e9-af91-4872dc234669"], Cell[1431, 44, 626, 13, 22, "Message",ExpressionUUID->"bae63da8-d063-461c-b011-1d4ac9d01047"], Cell[2060, 59, 664, 15, 25, "Print",ExpressionUUID->"f46f4636-68b0-4b87-b086-72d92dec882d"] }, Open ]], Cell[CellGroupData[{ Cell[2761, 79, 198, 3, 29, "Input",ExpressionUUID->"f02af3bb-ed9d-4fb8-9ab5-418e5d718cf5"], Cell[2962, 84, 585, 12, 54, "Output",ExpressionUUID->"3c9be348-6ed8-4a06-91b2-f14112004d3f"] }, Open ]], Cell[3562, 99, 211, 3, 29, "Input",ExpressionUUID->"736a6582-d513-4fda-84ed-908eb2a7766f"], Cell[3776, 104, 184, 3, 35, "Text",ExpressionUUID->"9fb785ee-e560-44c5-a5b3-5327bd61a726"], Cell[3963, 109, 647, 13, 29, "Input",ExpressionUUID->"7e4471aa-3419-4361-9954-ca85e8fdbcea"], Cell[4613, 124, 191, 3, 35, "Text",ExpressionUUID->"9974cf68-13cb-4621-b559-180b9188b28d"], Cell[4807, 129, 531, 12, 29, "Input",ExpressionUUID->"64960a86-3c40-410a-a0bf-67dc0dda7253"], Cell[5341, 143, 202, 3, 35, "Text",ExpressionUUID->"368224c4-3094-4b81-8a24-52920579e0af"], Cell[5546, 148, 403, 8, 29, "Input",ExpressionUUID->"2df0273a-68b0-4420-a181-5533de3142ef"], Cell[5952, 158, 256, 6, 35, "Text",ExpressionUUID->"d7357423-e955-4cba-b0ba-acc9d2b7e0e5"], Cell[6211, 166, 4540, 120, 135, "Input",ExpressionUUID->"466eedf4-1501-4c34-b467-6afcd6ee9c2b"], Cell[10754, 288, 215, 5, 35, "Text",ExpressionUUID->"4ea56a77-27f9-4776-93c6-8db6873f4f90"], Cell[10972, 295, 512, 10, 29, "Input",ExpressionUUID->"07904a6d-75de-42b6-bd6e-25258c9dfc13"], Cell[11487, 307, 641, 15, 36, "Text",ExpressionUUID->"551f2841-8783-4e7e-8126-fa2d7423c031"], Cell[12131, 324, 2379, 65, 50, "Input",ExpressionUUID->"bf8ef1f1-47be-4283-b703-c185b6f0b640"], Cell[14513, 391, 242, 6, 35, "Text",ExpressionUUID->"40d5a3ff-8fe6-48ac-bfbe-6a97c5e28c14"], Cell[14758, 399, 582, 13, 29, "Input",ExpressionUUID->"420e0d3e-8926-42c8-bf5b-90e13c9517d3"], Cell[15343, 414, 182, 3, 35, "Text",ExpressionUUID->"48590ebf-9c87-4ec4-bfbf-27e74718b29f"], Cell[15528, 419, 657, 18, 30, "Input",ExpressionUUID->"6be67f5a-9ae0-4ab1-a49b-076a5355b7fb"], Cell[16188, 439, 479, 9, 58, "Text",ExpressionUUID->"5352eb21-29c8-493a-98a4-6ede330dc961"], Cell[16670, 450, 3597, 79, 236, "Input",ExpressionUUID->"f4f2f39c-a979-492f-a025-beb69389c674"], Cell[20270, 531, 189, 3, 35, "Text",ExpressionUUID->"d96df70c-f12c-4947-8ff1-cf67a6e8d5f1"], Cell[20462, 536, 3421, 83, 216, "Input",ExpressionUUID->"e9aabedc-e11e-4cce-a76e-c710d3384ca9"], Cell[23886, 621, 186, 3, 35, "Text",ExpressionUUID->"f2486377-4c48-4788-b4f2-4a8d1780f87e"], Cell[CellGroupData[{ Cell[24097, 628, 1061, 20, 95, "Input",ExpressionUUID->"43731109-f22e-4624-b7f9-248becc79bba"], Cell[25161, 650, 813, 16, 39, "Message",ExpressionUUID->"abf371ca-58c8-4795-ab0f-e48019017a57"], Cell[25977, 668, 848, 17, 22, "Message",ExpressionUUID->"6add42d7-9b06-4c10-b557-2a4f82586ba9"], Cell[26828, 687, 813, 16, 39, "Message",ExpressionUUID->"c448ec90-71ed-4414-87d6-2ebcfc80ff50"], Cell[27644, 705, 847, 17, 22, "Message",ExpressionUUID->"893b7a4c-10f0-4db4-b378-e5c8025a0194"], Cell[28494, 724, 813, 16, 39, "Message",ExpressionUUID->"dcb27786-57db-461d-ac79-fd078991427f"], Cell[29310, 742, 893, 17, 22, "Message",ExpressionUUID->"3a8edaa3-2098-4fae-90bf-c5ed1c1dbaca"], Cell[30206, 761, 848, 17, 22, "Message",ExpressionUUID->"49a1ecea-4871-4d96-9dd2-729e5b68d5e3"], Cell[31057, 780, 896, 17, 22, "Message",ExpressionUUID->"847c3f1b-76bf-40e2-9240-01d923bac6b5"], Cell[31956, 799, 3757, 125, 283, "Output",ExpressionUUID->"ef7c1c2b-723d-47fb-86e2-c32b58b8897d"] }, Open ]] } ] *)