Circle-Packings/fractal_dimension/mcmullen_stuff/hexatreemcmullen.py
2021-07-16 00:59:31 -04:00

227 lines
No EOL
9.6 KiB
Python

from hexanode import Node
import math
import numpy as np
import time
from scipy.sparse import csr_matrix
from scipy import stats
def functions(n, z):
if n == 0:
return 0.333333333333333 + 0.192450089729875j + np.conj(0.0370370370370370/(-0.333333333333333 - 0.192450089729875j + z))
elif n == 1:
return 0.384900179459751j + np.conj(0.0370370370370370/(-0.384900179459751j + z))
elif n == 2:
return -0.333333333333333 + 0.192450089729875j + np.conj(0.0370370370370370/(0.333333333333333 - 0.192450089729875j + z))
elif n == 3:
return -0.333333333333333 - 0.192450089729875j + np.conj(0.0370370370370370/(0.333333333333333 + 0.192450089729875j + z))
elif n == 4:
return -0.384900179459751j + np.conj(0.0370370370370370/(0.384900179459751j + z))
elif n == 5:
return 0.333333333333333 - 0.192450089729875j + np.conj(0.0370370370370370/(-0.333333333333333 + 0.192450089729875j + z))
elif n == 6:
return 1.00000000000000 + 0.577350269189626j + np.conj(0.333333333333333/(-1.00000000000000 - 0.577350269189626j + z))
elif n == 7:
return 1.15470053837925j + np.conj(0.333333333333333/(-1.15470053837925j + z))
elif n == 8:
return -1.00000000000000 + 0.577350269189626j + np.conj(0.333333333333333/(1.00000000000000 - 0.577350269189626j + z))
elif n == 9:
return -1.00000000000000 - 0.577350269189626j + np.conj(0.333333333333333/(1.00000000000000 + 0.577350269189626j + z))
elif n == 10:
return -1.15470053837925j + np.conj(0.333333333333333/(1.15470053837925j + z))
elif n == 11:
return 1.00000000000000 - 0.577350269189626j + np.conj(0.333333333333333/(-1.00000000000000 + 0.577350269189626j + z))
def derivatives(n, z):
if n == 0:
return abs(-27.0000000000000*(-0.333333333333333 - 0.192450089729875j + z)**2)
elif n == 1:
return abs(-27.0000000000000*(-0.384900179459751j + z)**2)
elif n == 2:
return abs(-27.0000000000000*(0.333333333333333 - 0.192450089729875j + z)**2)
elif n == 3:
return abs(-27.0000000000000*(0.333333333333333 + 0.192450089729875j + z)**2)
elif n == 4:
return abs(-27.0000000000000*(0.384900179459751j + z)**2)
elif n == 5:
return abs(-27.0000000000000*(-0.333333333333333 + 0.192450089729875j + z)**2)
elif n == 6:
return abs(-3.00000000000000*(-1.00000000000000 - 0.577350269189626j + z)**2)
elif n == 7:
return abs(-3.00000000000000*(-1.15470053837925j + z)**2)
elif n == 8:
return abs(-3.00000000000000*(1.00000000000000 - 0.577350269189626j + z)**2)
elif n == 9:
return abs(-3.00000000000000*(1.00000000000000 + 0.577350269189626j + z)**2)
elif n == 10:
return abs(-3.00000000000000*(1.15470053837925j + z)**2)
elif n == 11:
return abs(-3.00000000000000*(-1.00000000000000 + 0.577350269189626j + z)**2)
def samplePoint(word):
points = [0.333333333333333 + 0.192450089729875j,
0.384900179459751j,
-0.333333333333333 + 0.192450089729875j,
-0.333333333333333 - 0.192450089729875j,
-0.384900179459751j,
0.333333333333333 - 0.192450089729875j,
0.750000000000000 + 0.433012701892219j,
0.866025403784439j,
-0.750000000000000 + 0.433012701892219j,
-0.750000000000000 - 0.433012701892219j,
-0.866025403784439j,
0.750000000000000 - 0.433012701892219j]
p = points[word[-1]]
for letter in word[-2::-1]:
p = functions(letter, p)
return p
def sampleValue(word):
return derivatives(word[0], samplePoint(word))
def generateTree(words, dc):
generators = [np.array([[1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0], [2, 6, -1, 0, 0,
0, 6, 0], [5, 10, -2, 0, 0, 0, 12, 0], [6, 9, -2, 0, 0, 0, 12,
0], [4, 4, -1, 0, 0, 0, 6, 0], [0, 0, 0, 0, 0, 0, 1, 0], [2, 10/
3, -(2/3), 0, 0, 0, 3, 0]]),
np.array([[0, 5, 3, 0, 0, 0, 9/2, -(3/2)], [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1,
0, 0, 0, 0, 0], [0, 3, 5, 0, 0, 0, 9/2, -(3/2)], [0, 7, 8, 0, 0, 0,
9, -3], [0, 8, 7, 0, 0, 0, 9, -3], [0, 0, 0, 0, 0, 0, 1, 0], [0, 8/
3, 8/3, 0, 0, 0, 2, -1]]),
np.array([[0, -2, 10, 5, 0, 0, 12, 0], [0, -1, 6, 2, 0, 0, 6, 0], [0, 0, 1, 0,
0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0], [0, -1, 4, 4, 0, 0, 6,
0], [0, -2, 9, 6, 0, 0, 12, 0], [0, 0, 0, 0, 0, 0, 1,
0], [0, -(2/3), 10/3, 2, 0, 0, 3, 0]]),
np.array([[-1, 0, 0, 6, 8, 0, 12, 0], [-1, 0, 0, 7, 7, 0, 12, 0], [-(1/2), 0,
0, 9/2, 3, 0, 6, 0], [0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0,
0], [-(1/2), 0, 0, 5/2, 5, 0, 6, 0], [0, 0, 0, 0, 0, 0, 1,
0], [-(1/3), 0, 0, 7/3, 8/3, 0, 3, 0]]),
np.array([[-1, 0, 0, 0, 2, 6, 6, 0], [-2, 0, 0, 0, 5, 10, 12, 0], [-2, 0, 0, 0,
6, 9, 12, 0], [-1, 0, 0, 0, 4, 4, 6, 0], [0, 0, 0, 0, 1, 0, 0,
0], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0], [-(2/3), 0,
0, 0, 2, 10/3, 3, 0]]),
np.array([[1, 0, 0, 0, 0, 0, 0, 0], [4, 0, 0, 0, -1, 4, 6, 0], [6, 0, 0, 0, -2,
9, 12, 0], [5, 0, 0, 0, -2, 10, 12, 0], [2, 0, 0, 0, -1, 6, 6,
0], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0], [2, 0, 0,
0, -(2/3), 10/3, 3, 0]]),
np.array([[1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0], [4, 4, 0, 0,
0, -1, 0, 6], [9, 6, 0, 0, 0, -2, 0, 12], [10, 5, 0, 0, 0, -2, 0,
12], [6, 2, 0, 0, 0, -1, 0, 6], [10/3, 2, 0, 0, 0, -(2/3), 0,
3], [0, 0, 0, 0, 0, 0, 0, 1]]),
np.array([[0, 4, 4, -1, 0, 0, 0, 6], [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0,
0, 0, 0], [0, 2, 6, -1, 0, 0, 0, 6], [0, 5, 10, -2, 0, 0, 0,
12], [0, 6, 9, -2, 0, 0, 0, 12], [0, 2, 10/3, -(2/3), 0, 0, 0,
3], [0, 0, 0, 0, 0, 0, 0, 1]]),
np.array([[0, 0, 7, 7, 0, -1, 0, 12], [0, 0, 9/2, 3, 0, -(1/2), 0, 6], [0, 0,
1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 5/2, 5,
0, -(1/2), 0, 6], [0, 0, 6, 8, 0, -1, 0, 12], [0, 0, 7/3, 8/3,
0, -(1/3), 0, 3], [0, 0, 0, 0, 0, 0, 0, 1]]),
np.array([[0, -1, 0, 7, 7, 0, 0, 12], [0, -1, 0, 8, 6, 0, 0, 12], [0, -(1/2),
0, 5, 5/2, 0, 0, 6], [0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0,
0], [0, -(1/2), 0, 3, 9/2, 0, 0, 6], [0, -(1/3), 0, 8/3, 7/3, 0, 0,
3], [0, 0, 0, 0, 0, 0, 0, 1]]),
np.array([[0, 0, -(1/2), 0, 3, 9/2, 0, 6], [0, 0, -1, 0, 7, 7, 0, 12], [0,
0, -1, 0, 8, 6, 0, 12], [0, 0, -(1/2), 0, 5, 5/2, 0, 6], [0, 0, 0,
0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, -(1/3), 0, 8/3, 7/
3, 0, 3], [0, 0, 0, 0, 0, 0, 0, 1]]),
np.array([[1, 0, 0, 0, 0, 0, 0, 0], [5, 0, -(1/2), 0, 0, 5/2, 0, 6], [8, 0, -1,
0, 0, 6, 0, 12], [7, 0, -1, 0, 0, 7, 0, 12], [3, 0, -(1/2), 0, 0,
9/2, 0, 6], [0, 0, 0, 0, 0, 1, 0, 0], [8/3, 0, -(1/3), 0, 0, 7/3, 0,
3], [0, 0, 0, 0, 0, 0, 0, 1]])]
root = Node([3, 3, 3, 3, 3, 3, 3, -1], [], words, False)
current_leaves = [root]
nodes = 1
while True:
new_leaves = []
for leaf in current_leaves:
next_gen = leaf.next_generation(words, dc, generators)
new_leaves += next_gen
nodes += len(next_gen) if len(next_gen) > 1 else 0
if current_leaves == new_leaves:
break
else:
current_leaves = new_leaves
for i,leaf in enumerate(current_leaves):
words[str(leaf.word)] = i
print(len(current_leaves), "partitions")
print(nodes,"nodes")
return current_leaves
def constructMatrix(words, dc):
leave = generateTree(words, dc)
row = []
col = []
data = []
for i,leaf in enumerate(leave):
thing = words[str(leaf.word[1:])]
if isinstance(thing,int):
row.append(i)
col.append(thing)
data.append(sampleValue(leaf.word))
else:
sample = sampleValue(leaf.word)
for wor in thing.leaves():
row.append(i)
col.append(words[str(wor.word)])
data.append(sample)
return csr_matrix((data,(row,col)),shape=(len(leave),len(leave)))
def secant(x0,y0,x1,y1,z):
return x0 - (y0-z) * ((x1-x0)/(y1-y0))
def matrixFunction(matrix,l,a):
matrix = matrix.power(a)
vec = np.ones(l)
previous_entry = vec[0]
previous_val = 0
current = matrix * vec
current_val = current[0] / previous_entry
count = 0
while count < 10000000000 and abs(current_val - previous_val) > 1e-15:
previous_val = current_val
previous_entry = current[0]
current = matrix * current
#print(current[0],previous_entry)
current_val = current[0] / previous_entry
count += 1
print("power method:", count)
return current_val
def secantMethod(matrix,l,z,x1,x2,e,its):
k1 = x1
k2 = x2
y1 = matrixFunction(matrix,l,k1)
y2 = matrixFunction(matrix,l,k2)
#y1 = testFunction(k1)
#y2 = testFunction(k2)
count = 1
print(count,k1,y1)
while abs(y1-z)>e and count<its:
k3 = secant(k1,y1,k2,y2,z)
k1 = k2
y1 = y2
k2 = k3
y2 = matrixFunction(matrix,l,k2)
#y2 = testFunction(k2)
count += 1
print(count,k1,y1)
def main():
start = time.time()
words = {}
m = 1000
print("maximum:",m)
matrix = constructMatrix(words,m)
#print(matrix)
print("construction (s): %f\nconstruction (m): %f" % (time.time()-start, (time.time()-start)/60))
#print(csr_matrix.transpose(matrix))
print(csr_matrix.count_nonzero(matrix), (matrix.shape[0])*11)
secantMethod(matrix,matrix.shape[0],1,1.33,1.34,10**(-10),1000)
print("total (s): %f\ntotal (m): %f" % (time.time()-start, (time.time()-start)/60))
main()