PolymathREU-Walking-to-infi.../cpp/template.cpp

105 lines
2.4 KiB
C++
Raw Permalink Normal View History

2020-07-17 22:36:57 -07:00
#include <iostream>
#include <vector>
#include <string>
#include <unordered_map>
using ull = unsigned long long;
auto next(ull x) -> std::vector<ull>;
auto is_prime(ull n) -> bool;
/* all tree stuff, don't really need to change it unless you have some ideas for
* optimizations
*/
class Tree
{
public:
ull value;
std::vector<Tree> children;
Tree(ull value, std::vector<ull> tree_children) : value(value) {
for (ull child : tree_children) {
children.push_back(Tree(child, {}));
}
}
void step() {
if (children.size() == 0) {
auto xs = next(value);
for (auto val : xs) {
children.push_back(Tree(val, {}));
}
} else {
for (auto &child : children) {
child.step();
}
}
}
auto longest_path() -> std::vector<ull> {
if (children.size() == 0) {
return { value };
}
std::vector<ull> max_path;
int max_length = 0;
for (auto &child : children) {
auto temp = child.longest_path();
if (temp.size() > max_length) {
max_length = temp.size();
max_path = temp;
}
}
std::vector<ull> retval = { value };
retval.insert(retval.end(), max_path.begin(), max_path.end());
return retval;
}
};
/* TODO Tweak this to change functionality according to explanation on the
* Overleaf
*/
auto next(ull x) -> std::vector<ull> {
std::vector<ull> new_xs;
return new_xs;
}
/* some helper functions */
auto is_prime(ull n) -> bool {
static std::unordered_map<ull, bool> primes;
if (n < 2) {
primes[n] = false;
return false;
}
if (primes.count(n) > 0) {
return primes[n];
}
for (int i = 2; i * i <= n; i++) {
if (n % i == 0) {
primes[n] = false;
return false;
}
}
primes[n] = true;
return true;
}
template <typename T>
auto print_vec(std::vector<T> vec) -> void {
std::cout << '[';
for (T &val : vec) {
std::cout << val << ", ";
}
std::cout << "]\n";
}
auto main() -> int {
/* starts off with a tree with value 0 and no children and searches 20
* iterations, feel free to tweak to whatever you want
*/
Tree tree(0, {});
for (int i = 0; i < 20; i++) {
tree.step();
print_vec(tree.longest_path());
}
}