PolymathREU-Walking-to-infi.../fortran/fourthfree.f90

145 lines
2.9 KiB
Fortran
Raw Normal View History

2020-08-02 01:22:39 -07:00
program test
implicit none
1 format(20i10)
integer (kind = 8), parameter :: base = 2
integer (kind = 8), dimension (:), allocatable :: ls, temp1, temp2
double precision :: S
integer (kind = 8) :: i
allocate(ls(1))
ls = (/1/)
S = 0
do i = 1, 63
S = S + (real(size(ls)) / real(2 ** i))
print *, "ITERATION", i
print *, "NUMBER ", size(ls)
print *, "SUM ", S
print *, ""
call flush()
temp1 = next(ls)
temp2 = ls
ls = temp1
deallocate(temp2)
end do
contains
function is_fourth_free (x)
integer (kind = 8), intent (in) :: x
integer (kind = 8) :: i
logical :: is_fourth_free
i = 2
do while (i * i * i * i <= x)
if (mod(x, i * i * i * i) == 0) then
is_fourth_free = .false.
return
end if
i = i + 1
end do
is_fourth_free = .true.
end function is_fourth_free
function is_square_free (x)
integer (kind = 8), intent (in) :: x
integer (kind = 8) :: i
logical :: is_square_free
i = 2
do while (i * i <= x)
if (mod(x, i * i) == 0) then
is_square_free = .false.
return
end if
i = i + 1
end do
is_square_free = .true.
end function is_square_free
function is_prime (x)
integer (kind = 8), intent (in) :: x
integer (kind = 8) :: i
logical :: is_prime
if (x < 2 .or. mod(x, 2) == 0) then
is_prime = .false.
return
end if
i = 3
do while (i * i <= x)
if (mod(x, i) == 0) then
is_prime = .false.
return
end if
i = i + 2
end do
is_prime = .true.
end function is_prime
function step (x)
implicit none
integer (kind = 8), intent (in) :: x
integer (kind = 8) :: i, t, count
integer (kind = 8), dimension (:), allocatable :: step
integer (kind = 8), dimension (base) :: temp
count = 0
do i = 0, base - 1
t = x * base + i
if (is_fourth_free(t)) then
count = count + 1
temp(count) = t
end if
end do
allocate(step(count))
do i = 1, count
step(i) = temp(i)
end do
end function step
function next (ls)
1 format(20i10)
integer (kind = 8), dimension (:), allocatable, intent (in) :: ls
integer (kind = 8), dimension (:), allocatable :: temp, temp2, next
integer :: s, i, j, count
count = 0
s = size(ls)
allocate(temp(s * base))
do i = 1, s
temp2 = step(ls(i))
do j = 1, size(temp2)
temp(j + count) = temp2(j)
end do
count = count + size(temp2)
deallocate(temp2)
end do
allocate(next(count))
do i = 1, count
next(i) = temp(i)
end do
deallocate(temp)
end function next
end program test