logical-foundations/ImpParser.v

161 lines
4.1 KiB
Coq
Raw Permalink Normal View History

2024-06-17 20:18:11 -07:00
From Coq Require Import Strings.String.
From Coq Require Import Strings.Ascii.
From Coq Require Import Arith.Arith.
From Coq Require Import Init.Nat.
From Coq Require Import Arith.EqNat.
From Coq Require Import Lists.List. Import ListNotations.
From LF Require Import Maps Imp.
Definition isWhite (c : ascii) : bool :=
let n := nat_of_ascii c in
orb (orb (n =? 32)
(n =? 9))
(orb (n =? 10)
(n =? 13)).
Notation "x '<=?' y" := (x <=? y)
(at level 70, no associativity) : nat_scope.
Definition isLowerAlpha (c : ascii) : bool :=
let n := nat_of_ascii c in
andb (97 <=? n) (n <=? 122).
Definition isAlpha (c : ascii) : bool :=
let n := nat_of_ascii c in
orb (andb (65 <=? n) (n <=? 90))
(andb (97 <=? n) (n <=? 122)).
Definition isDigit (c : ascii) : bool :=
let n := nat_of_ascii c in
andb (48 <=? n) (n <=? 57).
Inductive chartype := white | alpha | digit | other.
Definition classifyChar (c : ascii) : chartype :=
if isWhite c then
white
else if isAlpha c then
alpha
else if isDigit c then
digit
else
other.
Fixpoint list_of_string (s : string) : list ascii :=
match s with
| EmptyString => []
| String c s => c :: (list_of_string s)
end.
Definition string_of_list (xs : list ascii) : string :=
fold_right String EmptyString xs.
Definition token := string.
Fixpoint tokenize_helper (cls : chartype) (acc xs : list ascii)
: list (list ascii) :=
let tk := match acc with
| [] => []
| _::_ => [rev acc]
end
in
match xs with
| [] => tk
| (x :: xs') =>
match cls, classifyChar x, x with
| _, _, "(" =>
tk ++ ["("] :: (tokenize_helper other [] xs')
| _, _, ")" =>
tk ++ [")"] :: (tokenize_helper other [] xs')
| _, white, _ =>
tk ++ (tokenize_helper white [] xs')
| alpha, alpha, x =>
tokenize_helper alpha (x :: acc) xs'
| digit, digit, x =>
tokenize_helper digit (x :: acc) xs'
| other, other, x =>
tokenize_helper other (x :: acc) xs'
| _, tp, x =>
tk ++ (tokenize_helper tp [x] xs')
end
end %char.
Definition tokenize (s : string) : list string :=
map string_of_list (tokenize_helper white [] (list_of_string s)).
Example tokenize_ex1 :
tokenize "abc12=3 223*(3+(a+c))" %string
= ["abc"; "12"; "="; "3"; "223";
"*"; "("; "3"; "+"; "(";
"a"; "+"; "c"; ")"; ")"]%string.
Proof.
reflexivity.
Qed.
Inductive optionE (X : Type) : Type :=
| SomeE (x : X)
| NoneE (s : string).
Arguments SomeE {X}.
Arguments NoneE {X}.
Notation "' p <- e1 ;; e2"
:= (match e1 with
| SomeE p => e2
| NoneE err => NoneE err
end)
(right associativity, p pattern, at level 60, e1 at next level).
Notation "'TRY' e1 'OR' e2"
:= (
let result := e1 in
match result with
| SomeE _ => result
| NoneE _ => e2
end)
(right associativity,
at level 60, e1 at next level, e2 at next level).
Open Scope string_scope.
Definition parser (T : Type) :=
list token -> optionE (T * list token).
Fixpoint many_helper {T} (p : parser T) acc steps xs :=
match steps, p xs with
| 0, _ =>
NoneE "Too many recursive calls"
| _, NoneE _ =>
SomeE ((rev acc), xs)
| S steps', SomeE (t, xs') =>
many_helper p (t :: acc) steps' xs'
end.
Definition many {T} (p : parser T) (steps : nat) : parser (list T) :=
many_helper p [] steps.
Definition firstExpect {T} (t : token) (p : parser T)
: parser T :=
fun xs => match xs with
| x :: xs' =>
if string_dec x t
then p xs'
else NoneE ("expected '" ++ t ++ "'.")
| [] =>
NoneE ("expected '" ++ t ++ "'.")
end.
Definition expect (t : token) : parser unit :=
firstExpect t (fun xs => SomeE (tt, xs)).
Definition parseIdentifier (xs : list token)
: optionE (string * list token) :=
match xs with
| [] => NoneE "Expected identifier"
| x :: xs' =>
if forallb isLowerAlpha (list_of_string x) then
SomeE (x, xs')
else
NoneE ("Illegal identifier:'" ++ x ++ "'")
end.