From Coq Require Import Arith List. From Coq Require Import Lia. Require Import Ring. Theorem plus_id_exercise : forall n m o : nat, n = m -> m = o -> n + m = m + o. Proof. lia. Qed. Theorem add_assoc : forall n m p : nat, n + (m + p) = (n + m) + p. Proof. lia. Qed. Theorem S_injective : forall (n m : nat), S n = S m -> n = m. Proof. congruence. Qed. Theorem or_distributes_over_and : forall P Q R : Prop, P \/ (Q /\ R) <-> (P \/ Q) /\ (P \/ R). Proof. intuition. Qed.