perga/examples/algebra.pg

165 lines
6.5 KiB
Text
Raw Normal View History

2024-11-20 07:37:57 -08:00
-- --------------------------------------------------------------------------------------------------------------
-- | BASIC LOGIC |
-- --------------------------------------------------------------------------------------------------------------
@include logic.pg
2024-11-20 07:37:57 -08:00
-- --------------------------------------------------------------------------------------------------------------
-- | BASIC DEFINITIONS |
-- --------------------------------------------------------------------------------------------------------------
section BasicDefinitions
2024-11-20 07:37:57 -08:00
-- note we leave off the type ascriptions for most of these, as the type isn't
-- very interesting
-- I'd always strongly recommend including the type ascriptions for theorems
2024-11-20 07:37:57 -08:00
-- Fix some set A
variable (A : *);
2024-11-20 07:37:57 -08:00
-- a unary operation is a function `A -> A`
def unop := A -> A;
2024-11-20 07:37:57 -08:00
-- a binary operation is a function `A -> A -> A`
def binop := A -> A -> A;
2024-11-20 07:37:57 -08:00
-- fix some binary operation `op`
variable (op : binop);
2024-11-20 07:37:57 -08:00
-- it is associative if ...
def assoc := forall (a b c : A), eq A (op a (op b c)) (op (op a b) c);
2024-11-20 07:37:57 -08:00
-- fix some element `e`
variable (e : A);
2024-11-20 07:37:57 -08:00
-- it is a left identity with respect to binop `op` if `∀ a, e * a = a`
def id_l := forall (a : A), eq A (op e a) a;
2024-11-20 07:37:57 -08:00
-- likewise for right identity
def id_r := forall (a : A), eq A (op a e) a;
-- an element is an identity element if it is both a left and right identity
def id := and id_l id_r;
-- b is a left inverse for a if `b * a = e`
-- NOTE: we don't require `e` to be an identity in this definition.
-- this definition is purely for convenience's sake
def inv_l (a b : A) := eq A (op b a) e;
-- likewise for right inverse
def inv_r (a b : A) := eq A (op a b) e;
-- and full-on inverse
def inv (a b : A) := and (inv_l a b) (inv_r a b);
end BasicDefinitions
2024-11-20 07:37:57 -08:00
-- --------------------------------------------------------------------------------------------------------------
-- | ALGEBRAIC STRUCTURES |
-- --------------------------------------------------------------------------------------------------------------
-- a set `S` with binary operation `op` is a semigroup if its operation is associative
2024-12-01 15:29:05 -08:00
def semigroup (S : *) (op : binop S) : * := assoc S op;
2024-11-20 07:37:57 -08:00
section Monoid
variable (M : *) (op : binop M) (e : M);
-- a set `M` with binary operation `op` and element `e` is a monoid
def monoid : * := and (semigroup M op) (id M op e);
hypothesis (Hmonoid : monoid);
-- some "getters" for `monoid` so we don't have to do a bunch of very verbose
-- and-eliminations every time we want to use something
def id_lm : id_l M op e :=
and_elim_l (id_l M op e) (id_r M op e)
(and_elim_r (semigroup M op) (id M op e) Hmonoid);
def id_rm : id_r M op e :=
and_elim_r (id_l M op e) (id_r M op e)
(and_elim_r (semigroup M op) (id M op e) Hmonoid);
def assoc_m : assoc M op := and_elim_l (semigroup M op) (id M op e) Hmonoid;
-- now we can prove that, for any monoid, if `a` is a left identity, then it
-- must be "the" identity
def monoid_id_l_implies_identity (a : M) (H : id_l M op a) : eq M a e :=
-- WTS a = a * e = e
-- we can use `eq_trans` to glue proofs of `a = a * e` and `a * e = e` together
eq_trans M a (op a e) e
-- first, `a = a * e`, but we'll use `eq_sym` to flip it around
(eq_sym M (op a e) a
-- now the goal is to show `a * e = a`, which follows immediately from `id_r`
(id_rm a))
-- now we need to show that `a * e = e`, but this immediately follows from `H`
(H e);
-- the analogous result for right identities
def monoid_id_r_implies_identity (a : M) (H : id_r M op a) : eq M a e :=
-- this time, we'll show `a = e * a = e`
eq_trans M a (op e a) e
-- first, `a = e * a`
(eq_sym M (op e a) a
-- this time, it immediately follows from `id_l`
(id_lm a))
-- and `e * a = e`
(H e);
end Monoid
section Group
variable (G : *) (op : binop G) (e : G) (i : unop G);
-- groups are just monoids with inverses
def has_inverses : * := forall (a : G), inv G op e a (i a);
def group : * := and (monoid G op e) has_inverses;
hypothesis (Hgroup : group);
-- more "getters"
def monoid_g : monoid G op e := and_elim_l (monoid G op e) has_inverses Hgroup;
def assoc_g : assoc G op := assoc_m G op e monoid_g;
def id_lg : id_l G op e := id_lm G op e (and_elim_l (monoid G op e) has_inverses Hgroup);
def id_rg : id_r G op e := id_rm G op e (and_elim_l (monoid G op e) has_inverses Hgroup);
def inv_g : forall (a : G), inv G op e a (i a) := and_elim_r (monoid G op e) has_inverses Hgroup;
def left_inverse (a b : G) := inv_l G op e a b;
def right_inverse (a b : G) := inv_r G op e a b;
def inv_lg (a : G) : left_inverse a (i a) := and_elim_l (inv_l G op e a (i a)) (inv_r G op e a (i a)) (inv_g a);
def inv_rg (a : G) : right_inverse a (i a) := and_elim_r (inv_l G op e a (i a)) (inv_r G op e a (i a)) (inv_g a);
-- An interesting theorem: left inverses are unique, i.e. if b * a = e, then b = a^-1
def left_inv_unique (a b : G) (h : left_inverse a b) : eq G b (i a) :=
-- b = b * e
-- = b * (a * a^-1)
-- = (b * a) * a^-1
-- = e * a^-1
-- = a^-1
eq_trans G b (op b e) (i a)
-- b = b * e
(eq_sym G (op b e) b (id_rg b))
-- b * e = a^-1
(eq_trans G (op b e) (op b (op a (i a))) (i a)
--b * e = b * (a * a^-1)
(eq_cong G G e (op a (i a)) (op b)
-- e = a * a^-1
(eq_sym G (op a (i a)) e (inv_rg a)))
-- b * (a * a^-1) = a^-1
(eq_trans G (op b (op a (i a))) (op (op b a) (i a)) (i a)
-- b * (a * a^-1) = (b * a) * a^-1
(assoc_g b a (i a))
-- (b * a) * a^-1 = a^-1
(eq_trans G (op (op b a) (i a)) (op e (i a)) (i a)
-- (b * a) * a^-1 = e * a^-1
(eq_cong G G (op b a) e (fun (x : G) => op x (i a)) h)
-- e * a^-1 = a^-1
(id_lg (i a)))));
end Group