perga/examples/algebra.pg

105 lines
4.5 KiB
Text
Raw Normal View History

2024-11-20 07:37:57 -08:00
-- --------------------------------------------------------------------------------------------------------------
-- | BASIC LOGIC |
-- --------------------------------------------------------------------------------------------------------------
@include logic.pg
2024-11-20 07:37:57 -08:00
-- --------------------------------------------------------------------------------------------------------------
-- | BASIC DEFINITIONS |
-- --------------------------------------------------------------------------------------------------------------
-- note we leave off the type ascriptions for most of these, as the type isn't
-- very interesting
-- I'd always strongly recommend including the type ascriptions for theorems
-- a unary operation on a set `A` is a function `A -> A`
unop (A : *) := A -> A;
-- a binary operation on a set `A` is a function `A -> A -> A`
binop (A : *) := A -> A -> A;
-- a binary operation is associative if ...
assoc (A : *) (op : binop A) :=
forall (a b c : A), eq A (op (op a b) c) (op a (op b c));
-- an element `e : A` is a left identity with respect to binop `op` if `∀ a, e * a = a`
id_l (A : *) (op : binop A) (e : A) :=
forall (a : A), eq A (op e a) a;
-- likewise for right identity
id_r (A : *) (op : binop A) (e : A) :=
forall (a : A), eq A (op a e) a;
-- an element is an identity element if it is both a left and right identity
id (A : *) (op : binop A) (e : A) := and (id_l A op e) (id_r A op e);
-- b is a left inverse for a if `b * a = e`
-- NOTE: we don't require `e` to be an identity in this definition.
-- this definition is purely for convenience's sake
inv_l (A : *) (op : binop A) (e : A) (a b : A) := eq A (op b a) e;
-- likewise for right inverse
inv_r (A : *) (op : binop A) (e : A) (a b : A) := eq A (op a b) e;
-- and full-on inverse
inv (A : *) (op : binop A) (e : A) (a b : A) := and (inv_l A op e a b) (inv_r A op e a b);
-- --------------------------------------------------------------------------------------------------------------
-- | ALGEBRAIC STRUCTURES |
-- --------------------------------------------------------------------------------------------------------------
-- a set `S` with binary operation `op` is a semigroup if its operation is associative
semigroup (S : *) (op : binop S) : * := assoc S op;
-- a set `M` with binary operation `op` and element `e` is a monoid
monoid (M : *) (op : binop M) (e : M) : * :=
and (semigroup M op) (id M op e);
-- some "getters" for `monoid` so we don't have to do a bunch of very verbose
-- and-eliminations every time we want to use something
id_lm (M : *) (op : binop M) (e : M) (Hmonoid : monoid M op e) : id_l M op e :=
and_elim_l (id_l M op e) (id_r M op e)
(and_elim_r (semigroup M op) (id M op e) Hmonoid);
id_rm (M : *) (op : binop M) (e : M) (Hmonoid : monoid M op e) : id_r M op e :=
and_elim_r (id_l M op e) (id_r M op e)
(and_elim_r (semigroup M op) (id M op e) Hmonoid);
-- now we can prove that, for any monoid, if `a` is a left identity, then it
-- must be "the" identity
monoid_id_l_implies_identity
(M : *) (op : binop M) (e : M) (Hmonoid : monoid M op e)
(a : M) (H : id_l M op a) : eq M a e :=
-- WTS a = a * e = e
-- we can use `eq_trans` to glue proofs of `a = a * e` and `a * e = e` together
eq_trans M a (op a e) e
-- first, `a = a * e`, but we'll use `eq_sym` to flip it around
(eq_sym M (op a e) a
-- now the goal is to show `a * e = a`, which follows immediately from `id_r`
(id_rm M op e Hmonoid a))
-- now we need to show that `a * e = e`, but this immediately follows from `H`
(H e);
-- the analogous result for right identities
monoid_id_r_implies_identity
(M : *) (op : binop M) (e : M) (Hmonoid : monoid M op e)
(a : M) (H : id_r M op a) : eq M a e :=
-- this time, we'll show `a = e * a = e`
eq_trans M a (op e a) e
-- first, `a = e * a`
(eq_sym M (op e a) a
-- this time, it immediately follows from `id_l`
(id_lm M op e Hmonoid a))
-- and `e * a = e`
(H e);
-- groups are just monoids with inverses
group (G : *) (op : binop G) (e : G) (i : unop G) : * :=
and (monoid G op e)
(forall (a : G), inv G op e a (i a));