perga/examples/peano.pg

605 lines
23 KiB
Text
Raw Normal View History

-- {{{ Logic/general definitions
-- import basic logic definitions from <logic.pg>
2024-11-20 07:37:57 -08:00
@include logic.pg
@include algebra.pg
2024-11-20 07:37:57 -08:00
2024-12-01 15:29:05 -08:00
def comp (A B C : *) (g : B -> C) (f : A -> B) (x : A) : C :=
g (f x);
-- }}}
-- {{{ Axioms
2024-11-20 07:37:57 -08:00
2024-11-20 22:21:43 -08:00
-- Now we can define the Peano axioms. Unlike with equality, perga is not
-- powerful enough to construct the natural numbers (or at least to prove the
-- Peano axioms as theorems from a definition constructible in perga). However,
-- working with axioms is extremely common in math. As such, perga has a system
-- for doing just that, namely the *axiom* system.
--
-- In a definition, rather than give a value for the term, we can give it the
-- value axiom, in which case a type ascription is mandatory. Perga will then
-- trust our type ascription, and assume going forward that the identifier we
-- defined is a value of the asserted type. For example, we will use the axiom
-- system to assert the existence of a type of natural numbers
2024-11-20 07:37:57 -08:00
2024-12-01 15:29:05 -08:00
axiom nat : *;
2024-11-20 07:37:57 -08:00
2024-11-20 22:21:43 -08:00
-- As you can imagine, this can be risky. For instance, there's nothing stopping
-- us from saying
-- uh_oh : false := axiom;
-- or stipulating more subtly contradictory axioms. As such, as in mathematics,
-- axioms should be used with care.
--
-- There's another problem with axioms, namely that perga cannot do any
-- computations with axioms. The more you can define within perga natively, the
-- better, as computations done without axioms can be utilized by perga. For
-- example, in <computation.pg>, we define the natural numbers as Church
-- numerals entirely within perga. There, the proof that 1 + 1 = 2 is just
-- eq_refl, since they reduce to the same thing. Here, 1 + 1 = 2 will
-- require a proof, since perga is unable to do computations with things defined
-- as axioms.
--
-- With these warnings in place, the Peano axioms are proven to be consistent,
-- so we should be fine. I'm formalizing the second order axioms given in the
-- wikipedia article on the Peano axioms
-- (https://en.wikipedia.org/wiki/Peano_axioms).
2024-11-20 07:37:57 -08:00
-- axiom 1: 0 is a natural number
2024-12-01 15:29:05 -08:00
axiom zero : nat;
2024-11-20 07:37:57 -08:00
2024-11-20 22:21:43 -08:00
-- axiom 6: For every n, S n is a natural number.
2024-12-01 15:29:05 -08:00
axiom suc (n : nat) : nat;
2024-11-20 07:37:57 -08:00
2024-11-20 22:21:43 -08:00
-- axiom 7: If S n = S m, then n = m.
2024-12-01 15:29:05 -08:00
axiom suc_inj : forall (n m : nat), eq nat (suc n) (suc m) -> eq nat n m;
2024-11-20 07:37:57 -08:00
-- axiom 8: No successor of any natural number is zero.
2024-12-01 15:29:05 -08:00
axiom suc_nonzero : forall (n : nat), not (eq nat (suc n) zero);
2024-11-20 07:37:57 -08:00
-- axiom 9: Induction! For any proposition P on natural numbers, if P(0) holds,
-- and if for every natural number n, P(n) ⇒ P(S n), then P holds for all n.
2024-12-01 15:29:05 -08:00
axiom nat_ind : forall (P : nat -> *), P zero -> (forall (n : nat), P n -> P (suc n))
-> forall (n : nat), P n;
2024-11-20 07:37:57 -08:00
-- }}}
-- {{{ Basic Definitions
2024-11-20 07:37:57 -08:00
2024-11-20 22:21:43 -08:00
-- Now that we have stipulated these axioms, we are free to use them to make
-- definitions, prove theorems, etc.
--
-- Our first theorem, as a warm up, is to prove that every natural number is
-- either 0 or the successor of another natural number.
--
-- First, we will make a bunch of abbreviations, since these terms get really
-- long and complicated really quickly.
2024-11-20 13:22:06 -08:00
-- Some abbreviations for common numbers.
2024-12-01 15:29:05 -08:00
def one : nat := suc zero;
def two : nat := suc one;
def three : nat := suc two;
def four : nat := suc three;
def five : nat := suc four;
2024-11-20 07:37:57 -08:00
2024-11-20 22:21:43 -08:00
-- First, the predecessor of n is m if n = suc m.
2024-12-01 15:29:05 -08:00
def pred (n m : nat) : * := eq nat n (suc m);
2024-11-20 07:37:57 -08:00
2024-11-20 22:21:43 -08:00
-- Our claim is a disjunction, whose first option is that n = 0.
2024-12-01 15:29:05 -08:00
def szc_l (n : nat) := eq nat n zero;
2024-11-20 07:37:57 -08:00
2024-11-20 22:21:43 -08:00
-- The second option is that n has a predecessor.
2024-12-01 15:29:05 -08:00
def szc_r (n : nat) := exists nat (pred n);
2024-11-20 07:37:57 -08:00
-- So the claim we are trying to prove is that either one of the above options
2024-11-20 22:21:43 -08:00
-- holds for every n.
2024-12-01 15:29:05 -08:00
def szc (n : nat) := or (szc_l n) (szc_r n);
2024-11-20 07:37:57 -08:00
-- And here's our proof!
2024-12-01 15:29:05 -08:00
def suc_or_zero : forall (n : nat), szc n :=
2024-11-20 07:37:57 -08:00
-- We will prove this by induction.
nat_ind szc
-- For the base case, the first option holds, i.e. 0 = 0
(or_intro_l (szc_l zero) (szc_r zero) (eq_refl nat zero))
2024-11-20 22:21:43 -08:00
-- For the inductive case, suppose the theorem holds for n.
2024-11-20 07:37:57 -08:00
(fun (n : nat) (_ : szc n) =>
2024-11-20 22:21:43 -08:00
-- Then the right option holds for suc n, since suc n is the
-- successor of n
2024-11-20 07:37:57 -08:00
or_intro_r (szc_l (suc n)) (szc_r (suc n))
(exists_intro nat (pred (suc n)) n (eq_refl nat (suc n))));
-- }}}
-- {{{ Recursive Definitions
-- The next step would normally be to define addition and prove properties of
-- addition. However, we need to take a very long and difficult detour in order
-- to be able to define addition in the first place. The normal way addition is
-- defined is by the following two equations:
--
-- 1) n + 0 = n
-- 2) n + (suc m) = suc (n + m)
--
-- It is clear that this definition is ok, since m gets smaller with every
-- application of equation 2, until m reaches zero, whereupon we can use
-- equation 1. This argument, while perfectly reasonable, is deceptively
-- difficult to formalize. It turns out that this structure of recursively
-- defining a function by two equations similar to 1 and 2 is extremely common.
-- So, we will take the time to prove the following theorem.
--
-- Theorem (recursive definitions):
-- For every type A, element z : A, and function fS : nat -> A -> A, there
-- exists a unique function f : nat -> A satisfying
-- 1) f 0 = z
-- 2) forall n : nat, f (suc n) = fS n (f n)
--
-- Once we've proved this theorem, we can easily define addition such that,
-- i.e. that for any fixed n : nat, "n+" is the unique function satisfying
-- 1) n + 0 = n
-- 2) forall m : nat, n + (suc m) = suc (n + m)
-- Notice that this is the exact form we need in order to apply the theorem.
--
-- However, proving this theorem is *extremely long and difficult*. I would
-- recommend skipping this section and coming back to it after you are much
-- more used to perga. As such, I will go into a lot less detail on each of
-- these proofs than in the later sections.
--
-- Here's our game plan. We will define a relation R : nat -> A -> * such that
-- R x y iff for every relation Q : nat -> A -> * satisfying
-- 1) Q 0 z and
-- 2) forall (x : nat) (y : A), Q x y -> Q (suc x) (fS x y),
-- Q x y.
-- In more mathy lingo, we take R to be the intersection of every relation
-- satisfying 1 and 2. From there we will, with much effort, prove that R is
-- actually a function satisfying the equations we want it to.
2024-12-06 13:36:14 -08:00
section RecursiveDefs
-- First, fix an A, z : A, and fS : nat -> A -> A
2024-12-06 13:36:14 -08:00
variable (A : *) (z : A) (fS : nat -> A -> A);
-- {{{ Defining R
-- Here is condition 1 formally expressed in perga.
2024-12-06 13:36:14 -08:00
def cond1 (Q : nat -> A -> *) := Q zero z;
-- Likewise for condition 2.
2024-12-06 13:36:14 -08:00
def cond2 (Q : nat -> A -> *) :=
forall (n : nat) (y : A), Q n y -> Q (suc n) (fS n y);
-- From here we can define R.
2024-12-06 13:36:14 -08:00
def rec_rel (x : nat) (y : A) :=
forall (Q : nat -> A -> *), cond1 Q -> cond2 Q -> Q x y;
-- }}}
-- {{{ R is total
2024-12-01 15:29:05 -08:00
def total (A B : *) (R : A -> B -> *) := forall (a : A), exists B (R a);
2024-12-06 13:36:14 -08:00
def rec_rel_cond1 : cond1 rec_rel :=
fun (Q : nat -> A -> *) (h1 : cond1 Q) (h2 : cond2 Q) => h1;
2024-12-06 13:36:14 -08:00
def rec_rel_cond2 : cond2 rec_rel :=
fun (n : nat) (y : A) (h : rec_rel n y)
(Q : nat -> A -> *) (h1 : cond1 Q) (h2 : cond2 Q) =>
h2 n y (h Q h1 h2);
2024-12-06 13:36:14 -08:00
def rec_rel_total : total nat A rec_rel :=
2024-12-06 21:23:35 -08:00
let (P (x : nat) := exists A (rec_rel x)) in
nat_ind P
2024-12-06 21:23:35 -08:00
(exists_intro A (rec_rel zero) z rec_rel_cond1)
(fun (n : nat) (IH : P n) =>
2024-12-06 21:23:35 -08:00
exists_elim A (P (suc n)) (rec_rel n) IH
(fun (y0 : A) (hy : rec_rel n y0) =>
exists_intro A (rec_rel (suc n)) (fS n y0) (rec_rel_cond2 n y0 hy)))
end;
2024-12-06 13:36:14 -08:00
-- }}}
-- {{{ Defining R2
2024-12-06 13:36:14 -08:00
def alt_cond1 (x : nat) (y : A) :=
and (eq nat x zero) (eq A y z);
2024-12-06 13:36:14 -08:00
def cond_y2 (x : nat) (y : A)
(x2 : nat) (y2 : A) :=
2024-12-06 13:36:14 -08:00
and (eq A y (fS x2 y2)) (rec_rel x2 y2);
2024-12-06 13:36:14 -08:00
def cond_x2 (x : nat) (y : A) (x2 : nat) :=
and (pred x x2) (exists A (cond_y2 x y x2));
2024-12-06 13:36:14 -08:00
def alt_cond2 (x : nat) (y : A) := exists nat (cond_x2 x y);
2024-12-06 13:36:14 -08:00
def rec_rel_alt (x : nat) (y : A) := or (alt_cond1 x y) (alt_cond2 x y);
-- }}}
-- {{{ R = R2
-- {{{ R2 ⊆ R
2024-12-06 21:23:35 -08:00
def R2_sub_R_case1 (x : nat) (y : A) : alt_cond1 x y -> rec_rel x y :=
fun (case1 : alt_cond1 x y) =>
let (x0 := and_elim_l (eq nat x zero) (eq A y z) case1)
(yz := and_elim_r (eq nat x zero) (eq A y z) case1)
(a1 := (eq_sym A y z yz) (rec_rel zero) rec_rel_cond1)
in
(eq_sym nat x zero x0) (fun (n : nat) => rec_rel n y) a1
end;
def R2_sub_R_case2 (x : nat) (y : A) : alt_cond2 x y -> rec_rel x y :=
fun (case2 : alt_cond2 x y) =>
let (h1 := cond_x2 x y)
(h2 := cond_y2 x y)
in
exists_elim nat (rec_rel x y) h1 case2
(fun (x2 : nat) (hx2 : h1 x2) =>
let (hpred := and_elim_l (pred x x2) (exists A (h2 x2)) hx2)
(hex := and_elim_r (pred x x2) (exists A (h2 x2)) hx2)
in
exists_elim A (rec_rel x y) (h2 x2) hex
(fun (y2 : A) (hy2 : h2 x2 y2) =>
let (hpreim := and_elim_l (eq A y (fS x2 y2)) (rec_rel x2 y2) hy2)
(hR := and_elim_r (eq A y (fS x2 y2)) (rec_rel x2 y2) hy2)
(a1 := rec_rel_cond2 x2 y2 hR)
(a2 := (eq_sym A y (fS x2 y2) hpreim) (rec_rel (suc x2)) a1)
in
2024-12-06 21:23:35 -08:00
(eq_sym nat x (suc x2) hpred) (fun (n : nat) => rec_rel n y) a2
end)
2024-12-06 21:23:35 -08:00
end)
end;
def R2_sub_R (x : nat) (y : A) : rec_rel_alt x y -> rec_rel x y :=
fun (h : rec_rel_alt x y) =>
or_elim (alt_cond1 x y) (alt_cond2 x y) (rec_rel x y) h
(R2_sub_R_case1 x y)
(R2_sub_R_case2 x y);
-- }}}
-- {{{ R ⊆ R2
2024-12-06 13:36:14 -08:00
def R2_cond1 : cond1 rec_rel_alt :=
or_intro_l (alt_cond1 zero z) (alt_cond2 zero z)
(and_intro (eq nat zero zero) (eq A z z)
(eq_refl nat zero)
(eq_refl A z));
2024-12-06 13:36:14 -08:00
def R2_cond2 : cond2 rec_rel_alt :=
2024-12-06 21:23:35 -08:00
fun (x2 : nat) (y2 : A) (h : rec_rel_alt x2 y2) =>
let (x := suc x2)
(y := fS x2 y2)
(cx2 := cond_x2 x y)
(cy2 := cond_y2 x y x2)
in
2024-12-06 21:23:35 -08:00
or_intro_r (alt_cond1 x y) (alt_cond2 x y)
(exists_intro nat cx2 x2
(and_intro (pred x x2) (exists A cy2)
(eq_refl nat x)
(exists_intro A cy2 y2
(and_intro (eq A y y) (rec_rel x2 y2)
(eq_refl A y)
(R2_sub_R x2 y2 h)))))
end;
2024-12-06 13:36:14 -08:00
def R_sub_R2 (x : nat) (y : A) : rec_rel x y -> rec_rel_alt x y :=
fun (h : rec_rel x y) => h rec_rel_alt R2_cond1 R2_cond2;
-- }}}
-- }}}
-- {{{ R2 (hence R) is functional
2024-12-01 15:29:05 -08:00
def fl_in (A B : *) (R : A -> B -> *) (x : A) := forall (y1 y2 : B),
R x y1 -> R x y2 -> eq B y1 y2;
2024-12-01 15:29:05 -08:00
def fl (A B : *) (R : A -> B -> *) := forall (x : A), fl_in A B R x;
2024-12-06 13:36:14 -08:00
def R2_zero (y : A) : rec_rel_alt zero y -> eq A y z :=
2024-12-06 21:23:35 -08:00
let (cx2 := cond_x2 zero y)
2024-12-06 13:36:14 -08:00
(cy2 := cond_y2 zero y)
2024-12-06 21:23:35 -08:00
in fun (h : rec_rel_alt zero y) =>
or_elim (alt_cond1 zero y) (alt_cond2 zero y) (eq A y z) h
(fun (case1 : alt_cond1 zero y) => and_elim_r (eq nat zero zero) (eq A y z) case1)
(fun (case2 : alt_cond2 zero y) =>
exists_elim nat (eq A y z) cx2 case2
(fun (x2 : nat) (h2 : cx2 x2) =>
suc_nonzero x2
(eq_sym nat zero (suc x2) (and_elim_l (pred zero x2) (exists A (cy2 x2)) h2))
(eq A y z)))
end;
2024-12-06 13:36:14 -08:00
def R2_suc (x2 : nat) (y : A) : rec_rel_alt (suc x2) y -> exists A (cond_y2 (suc x2) y x2) :=
2024-12-06 21:23:35 -08:00
let (x := suc x2)
2024-12-06 13:36:14 -08:00
(cx2 := cond_x2 x y)
(cy2 := cond_y2 x y)
(goal := exists A (cy2 x2))
in
2024-12-06 21:23:35 -08:00
fun (h : rec_rel_alt x y) =>
or_elim (alt_cond1 x y) (alt_cond2 x y) goal h
(fun (case1 : alt_cond1 x y) => suc_nonzero x2 (and_elim_l (eq nat x zero) (eq A y z) case1) goal)
(fun (case2 : alt_cond2 x y) =>
exists_elim nat goal cx2 case2
(fun (x22 : nat) (hx22 : cx2 x22) =>
let (hpred := and_elim_l (pred x x22) (exists A (cy2 x22)) hx22)
(hgoal := and_elim_r (pred x x22) (exists A (cy2 x22)) hx22)
(x2_x22 := suc_inj x2 x22 hpred)
in
(eq_sym nat x2 x22 x2_x22)
(fun (n : nat) => exists A (cy2 n))
hgoal
end))
end;
2024-12-06 21:23:35 -08:00
def R2_functional_base_case : fl_in nat A rec_rel_alt zero :=
fun (y1 y2 : A) (h1 : rec_rel_alt zero y1) (h2 : rec_rel_alt zero y2) =>
eq_trans A y1 z y2
(R2_zero y1 h1)
(eq_sym A y2 z (R2_zero y2 h2));
def R2_functional_inductive_step (x2 : nat) (IH : fl_in nat A rec_rel_alt x2) : fl_in nat A rec_rel_alt (suc x2) :=
fun (y1 y2 : A) (h1 : rec_rel_alt (suc x2) y1) (h2 : rec_rel_alt (suc x2) y2) =>
let (x := suc x2)
(cy1 := cond_y2 x y1 x2)
(cy2 := cond_y2 x y2 x2)
(goal := eq A y1 y2)
in
exists_elim A goal cy1 (R2_suc x2 y1 h1)
(fun (y12 : A) (h12 : cy1 y12) =>
exists_elim A goal cy2 (R2_suc x2 y2 h2)
(fun (y22 : A) (h22 : cy2 y22) =>
let (y1_preim := and_elim_l (eq A y1 (fS x2 y12)) (rec_rel x2 y12) h12)
(y2_preim := and_elim_l (eq A y2 (fS x2 y22)) (rec_rel x2 y22) h22)
(R_x2_y12 := and_elim_r (eq A y1 (fS x2 y12)) (rec_rel x2 y12) h12)
(R_x2_y22 := and_elim_r (eq A y2 (fS x2 y22)) (rec_rel x2 y22) h22)
(R2_x2_y12 := R_sub_R2 x2 y12 R_x2_y12)
(R2_x2_y22 := R_sub_R2 x2 y22 R_x2_y22)
(y12_y22 := IH y12 y22 R2_x2_y12 R2_x2_y22)
in
eq_trans A y1 (fS x2 y12) y2
y1_preim
(eq_trans A (fS x2 y12) (fS x2 y22) y2
(eq_cong A A y12 y22 (fun (y : A) => fS x2 y) y12_y22)
(eq_sym A y2 (fS x2 y22) y2_preim))
end))
end;
2024-12-06 13:36:14 -08:00
def R2_functional : fl nat A rec_rel_alt :=
2024-12-06 21:23:35 -08:00
nat_ind (fl_in nat A rec_rel_alt) R2_functional_base_case R2_functional_inductive_step;
2024-12-06 13:36:14 -08:00
def R_functional : fl nat A rec_rel :=
fun (n : nat) (y1 y2 : A) (h1 : rec_rel n y1) (h2 : rec_rel n y2) =>
R2_functional n y1 y2 (R_sub_R2 n y1 h1) (R_sub_R2 n y2 h2);
-- }}}
-- {{{ Actually defining the function
2024-12-06 13:36:14 -08:00
def rec_def (x : nat) : A :=
exists_elim A A (rec_rel x) (rec_rel_total x) (fun (y : A) (_ : rec_rel x y) => y);
-- }}}
-- {{{ It satisfies the properties we want it to
-- Kind of stupidly, we still need one more axiom. Due to how existentials are
-- defined, even though rec_def n is defined to be the y such that R n y, we
-- can't actually conclude that R n (rec_def n).
-- We need to assert that, even if you "forget" that a value came from an
-- existential, it still satisfies the property it definitionally is supposed
-- to satisfy. This annoying problem would be subverted with proper Σ-types,
-- provided they had η-equality.
axiom definite_description (A : *) (P : A -> *) (h : exists A P) :
P (exists_elim A A P h (fun (x : A) (_ : P x) => x));
-- Now we can use this axiom to prove that R n (rec_def n).
2024-12-06 13:36:14 -08:00
def rec_def_sat (x : nat) : rec_rel x (rec_def x) :=
definite_description A (rec_rel x) (rec_rel_total x);
2024-12-06 13:36:14 -08:00
def eq1 (f : nat -> A) := eq A (f zero) z;
2024-12-06 13:36:14 -08:00
def eq2 (f : nat -> A) := forall (n : nat), eq A (f (suc n)) (fS n (f n));
-- f zero = z
2024-12-06 13:36:14 -08:00
def rec_def_sat_zero : eq1 rec_def := R_functional zero (rec_def zero) z (rec_def_sat zero) rec_rel_cond1;
-- f n = y -> f (suc n) = fS n y
2024-12-06 21:23:35 -08:00
def rec_def_sat_suc : eq2 rec_def := fun (n : nat) =>
R_functional (suc n) (rec_def (suc n)) (fS n (rec_def n)) (rec_def_sat (suc n)) (rec_rel_cond2 n (rec_def n) (rec_def_sat n));
-- }}}
-- {{{ The function satisfying these equations is unique
2024-12-06 13:36:14 -08:00
def rec_def_unique (fS : nat -> A -> A) (f g : nat -> A) (h1f : eq1 f) (h2f : eq2 f) (h1g : eq1 g) (h2g : eq2 g)
: forall (n : nat), eq A (f n) (g n) :=
nat_ind (fun (n : nat) => eq A (f n) (g n))
-- base case: f 0 = g 0
(eq_trans A (f zero) z (g zero) h1f (eq_sym A (g zero) z h1g))
-- Inductive step
(fun (n : nat) (IH : eq A (f n) (g n)) =>
-- f (suc n) = fS n (f n)
-- = fS n (g n)
-- = g (suc n)
eq_trans A (f (suc n)) (fS n (f n)) (g (suc n))
-- f (suc n) = fS n (f n)
(h2f n)
-- fS n (f n) = g (suc n)
(eq_trans A (fS n (f n)) (fS n (g n)) (g (suc n))
-- fS n (f n) = fS n (g n)
(eq_cong A A (f n) (g n) (fS n) IH)
-- fS n (g n) = g (suc n)
(eq_sym A (g (suc n)) (fS n (g n)) (h2g n))));
-- }}}
2024-12-06 13:36:14 -08:00
end RecursiveDefs
-- }}}
-- Now we can safely define addition.
-- First, here's the RHS of equation 2 as a function, since it will show up
-- multiple times.
def psuc (_ r : nat) := suc r;
-- And here's plus!
def plus (n : nat) : nat -> nat := rec_def nat n psuc;
-- The first equation manifests itself as the familiar
-- n + 0 = 0.
def plus_0_r (n : nat) : eq nat (plus n zero) n :=
rec_def_sat_zero nat n psuc;
-- The second equation, after a bit of massaging, manifests itself as the
-- likewise familiar
-- n + suc m = suc (n + m).
def plus_s_r (n m : nat) : eq nat (plus n (suc m)) (suc (plus n m)) :=
rec_def_sat_suc nat n psuc m;
-- -- We can now prove 1 + 1 = 2!
def one_plus_one_two : eq nat (plus one one) two :=
-- 1 + (suc zero) = suc (1 + zero) = suc one
eq_trans nat (plus one one) (suc (plus one zero)) two
-- 1 + (suc zero) = suc (1 + zero)
(plus_s_r one zero)
-- suc (1 + zero) = suc one
(eq_cong nat nat (plus one zero) one suc (plus_0_r one));
-- We have successfully defined addition! Note that evaluating 1 + 1 to 2
-- requires a proof, unfortunately, since this computation isn't visible to
-- perga.
--
-- We will now prove a couple standard properties of addition.
-- First, associativity, namely that n + (m + p) = (n + m) + p.
def plus_assoc : assoc nat plus := fun (n m : nat) =>
-- We prove this via induction on p for any fixed n and m.
nat_ind
(fun (p : nat) => eq nat (plus n (plus m p)) (plus (plus n m) p))
-- Base case: p = 0
-- WTS n + (m + 0) = (n + m) + 0
-- n + (m + 0) = n + m = (n + m) + 0
(eq_trans nat (plus n (plus m zero)) (plus n m) (plus (plus n m) zero)
-- n + (m + 0) = n + m
(eq_cong nat nat (plus m zero) m (fun (p : nat) => plus n p) (plus_0_r m))
-- n + m = (n + m) + 0
(eq_sym nat (plus (plus n m) zero) (plus n m) (plus_0_r (plus n m))))
-- Inductive step: IH = n + (m + p) = (n + m) + p
(fun (p : nat) (IH : eq nat (plus n (plus m p)) (plus (plus n m) p)) =>
-- WTS n + (m + suc p) = (n + m) + suc p
-- n + (m + suc p) = n + suc (m + p)
-- = suc (n + (m + p))
-- = suc ((n + m) + p)
-- = (n + m) + suc p
eq_trans nat (plus n (plus m (suc p))) (plus n (suc (plus m p))) (plus (plus n m) (suc p))
-- n + (m + suc p) = n + suc (m + p)
(eq_cong nat nat (plus m (suc p)) (suc (plus m p)) (fun (a : nat) => (plus n a)) (plus_s_r m p))
-- n + suc (m + p) = (n + m) + suc p
(eq_trans nat (plus n (suc (plus m p))) (suc (plus n (plus m p))) (plus (plus n m) (suc p))
-- n + suc (m + p) = suc (n + (m + p))
(plus_s_r n (plus m p))
-- suc (n + (m + p)) = (n + m) + suc p
(eq_trans nat (suc (plus n (plus m p))) (suc (plus (plus n m) p)) (plus (plus n m) (suc p))
-- suc (n + (m + p)) = suc ((n + m) + p)
(eq_cong nat nat (plus n (plus m p)) (plus (plus n m) p) suc IH)
-- suc ((n + m) + p) = (n + m) + suc p
(eq_sym nat (plus (plus n m) (suc p)) (suc (plus (plus n m) p))
(plus_s_r (plus n m) p)))));
-- Up next is commutativity, but we will need a couple lemmas first.
-- First, we will show that 0 + n = n.
def plus_0_l : forall (n : nat), eq nat (plus zero n) n :=
-- We prove this by induction on n.
nat_ind (fun (n : nat) => eq nat (plus zero n) n)
-- base case: WTS 0 + 0 = 0
-- This is just plus_0_r 0
(plus_0_r zero)
-- inductive case
(fun (n : nat) (IH : eq nat (plus zero n) n) =>
-- WTS 0 + (suc n) = suc n
-- 0 + (suc n) = suc (0 + n) = suc n
eq_trans nat (plus zero (suc n)) (suc (plus zero n)) (suc n)
-- 0 + (suc n) = suc (0 + n)
(plus_s_r zero n)
-- suc (0 + n) = suc n
(eq_cong nat nat (plus zero n) n suc IH));
-- Next, we will show that (suc n) + m = suc (n + m).
def plus_s_l (n : nat) : forall (m : nat), eq nat (plus (suc n) m) (suc (plus n m)) :=
-- We proceed by induction on m.
nat_ind (fun (m : nat) => eq nat (plus (suc n) m) (suc (plus n m)))
-- base case: (suc n) + 0 = suc (n + 0)
-- (suc n) + 0 = suc n = suc (n + 0)
(eq_trans nat (plus (suc n) zero) (suc n) (suc (plus n zero))
-- (suc n) + 0 = suc n
(plus_0_r (suc n))
-- suc n = suc (n + 0)
(eq_cong nat nat n (plus n zero) suc
-- n = n + 0
(eq_sym nat (plus n zero) n (plus_0_r n))))
-- inductive case
-- IH = suc n + m = suc (n + m)
(fun (m : nat) (IH : eq nat (plus (suc n) m) (suc (plus n m))) =>
-- WTS suc n + suc m = suc (n + suc m)
-- suc n + suc m = suc (suc n + m)
-- = suc (suc (n + m))
-- = suc (n + suc m)
(eq_trans nat (plus (suc n) (suc m)) (suc (plus (suc n) m)) (suc (plus n (suc m)))
-- suc n + suc m = suc (suc n + m)
(plus_s_r (suc n) m)
-- suc (suc n + m) = suc (n + suc m)
(eq_trans nat (suc (plus (suc n) m)) (suc (suc (plus n m))) (suc (plus n (suc m)))
-- suc (suc n + m) = suc (suc (n + m))
(eq_cong nat nat (plus (suc n) m) (suc (plus n m)) suc IH)
-- suc (suc (n + m)) = suc (n + suc m)
(eq_cong nat nat (suc (plus n m)) (plus n (suc m)) suc
-- suc (n + m) = n + suc m
(eq_sym nat (plus n (suc m)) (suc (plus n m)) (plus_s_r n m))))));
-- Finally, we can prove commutativity.
def plus_comm (n : nat) : forall (m : nat), eq nat (plus n m) (plus m n) :=
-- As usual, we proceed by induction.
nat_ind (fun (m : nat) => eq nat (plus n m) (plus m n))
-- Base case: WTS n + 0 = 0 + n
-- n + 0 = n = 0 + n
(eq_trans nat (plus n zero) n (plus zero n)
-- n + 0 = n
(plus_0_r n)
-- n = 0 + n
(eq_sym nat (plus zero n) n (plus_0_l n)))
-- Inductive step:
(fun (m : nat) (IH : eq nat (plus n m) (plus m n)) =>
-- WTS n + suc m = suc m + n
-- n + suc m = suc (n + m)
-- = suc (m + n)
-- = suc m + n
(eq_trans nat (plus n (suc m)) (suc (plus n m)) (plus (suc m) n)
-- n + suc m = suc (n + m)
(plus_s_r n m)
-- suc (n + m) = suc m + n
(eq_trans nat (suc (plus n m)) (suc (plus m n)) (plus (suc m) n)
-- suc (n + m) = suc (m + n)
(eq_cong nat nat (plus n m) (plus m n) suc IH)
-- suc (m + n) = suc m + n
(eq_sym nat (plus (suc m) n) (suc (plus m n)) (plus_s_l m n)))));