starting progress on (non-dependent) products
This commit is contained in:
parent
52ce107a04
commit
2c1f193d77
8 changed files with 123 additions and 45 deletions
|
|
@ -35,20 +35,17 @@ def double_neg_intro (A : ★) (a : A) : not (not A) :=
|
|||
|
||||
-- Conjunction
|
||||
|
||||
def ∧ (A B : ★) : ★ := forall (C : ★), (A → B → C) → C;
|
||||
def ∧ (A B : ★) : ★ := {A × B};
|
||||
infixl 10 ∧;
|
||||
|
||||
-- introduction rule
|
||||
def and_intro (A B : ★) (a : A) (b : B) : A ∧ B :=
|
||||
fun (C : ★) (H : A → B → C) => H a b;
|
||||
def and_intro (A B : ★) (a : A) (b : B) : A ∧ B := <a, b>;
|
||||
|
||||
-- left elimination rule
|
||||
def and_elim_l (A B : ★) (ab : A ∧ B) : A :=
|
||||
ab A (fun (a : A) (b : B) => a);
|
||||
def and_elim_l (A B : ★) (ab : A ∧ B) : A := π₁ ab;
|
||||
|
||||
-- right elimination rule
|
||||
def and_elim_r (A B : ★) (ab : A ∧ B) : B :=
|
||||
ab B (fun (a : A) (b : B) => b);
|
||||
def and_elim_r (A B : ★) (ab : A ∧ B) : B := π₂ ab;
|
||||
|
||||
-- --------------------------------------------------------------------------------------------------------------
|
||||
|
||||
|
|
@ -149,31 +146,25 @@ section Theorems
|
|||
|
||||
-- ~(A ∨ B) => ~A ∧ ~B
|
||||
def de_morgan1 (h : not (A ∨ B)) : not A ∧ not B :=
|
||||
and_intro (not A) (not B)
|
||||
([a : A] h (or_intro_l A B a))
|
||||
([b : B] h (or_intro_r A B b));
|
||||
<[a : A] h (or_intro_l A B a)
|
||||
,[b : B] h (or_intro_r A B b)>;
|
||||
|
||||
-- ~A ∧ ~B => ~(A ∨ B)
|
||||
def de_morgan2 (h : not A ∧ not B) : not (A ∨ B) :=
|
||||
fun (contra : A ∨ B) =>
|
||||
or_elim A B false contra
|
||||
(and_elim_l (not A) (not B) h)
|
||||
(and_elim_r (not A) (not B) h);
|
||||
or_elim A B false contra (π₁ h) (π₂ h);
|
||||
|
||||
-- ~A ∨ ~B => ~(A ∧ B)
|
||||
def de_morgan3 (h : not A ∨ not B) : not (A ∧ B) :=
|
||||
fun (contra : A ∧ B) =>
|
||||
or_elim (not A) (not B) false h
|
||||
(fun (na : not A) => na (and_elim_l A B contra))
|
||||
(fun (nb : not B) => nb (and_elim_r A B contra));
|
||||
(fun (na : not A) => na (π₁ contra))
|
||||
(fun (nb : not B) => nb (π₂ contra));
|
||||
|
||||
-- the last one (~(A ∧ B) => ~A ∨ ~B) is not possible constructively
|
||||
|
||||
-- A ∧ B => B ∧ A
|
||||
def and_comm (h : A ∧ B) : B ∧ A :=
|
||||
and_intro B A
|
||||
(and_elim_r A B h)
|
||||
(and_elim_l A B h);
|
||||
def and_comm (h : A ∧ B) : B ∧ A := <π₂ h, π₁ h>;
|
||||
|
||||
-- A ∨ B => B ∨ A
|
||||
def or_comm (h : A ∨ B) : B ∨ A :=
|
||||
|
|
@ -183,23 +174,11 @@ section Theorems
|
|||
|
||||
-- A ∧ (B ∧ C) => (A ∧ B) ∧ C
|
||||
def and_assoc_l (h : A ∧ (B ∧ C)) : (A ∧ B) ∧ C :=
|
||||
let (a := (and_elim_l A (B ∧ C) h))
|
||||
(bc := (and_elim_r A (B ∧ C) h))
|
||||
(b := (and_elim_l B C bc))
|
||||
(c := (and_elim_r B C bc))
|
||||
in
|
||||
and_intro (A ∧ B) C (and_intro A B a b) c
|
||||
end;
|
||||
<<π₁ h, π₁ (π₂ h)>, π₂ (π₂ h)>;
|
||||
|
||||
-- (A ∧ B) ∧ C => A ∧ (B ∧ C)
|
||||
def and_assoc_r (h : (A ∧ B) ∧ C) : A ∧ (B ∧ C) :=
|
||||
let (ab := and_elim_l (A ∧ B) C h)
|
||||
(a := and_elim_l A B ab)
|
||||
(b := and_elim_r A B ab)
|
||||
(c := and_elim_r (A ∧ B) C h)
|
||||
in
|
||||
and_intro A (B ∧ C) a (and_intro B C b c)
|
||||
end;
|
||||
<π₁ (π₁ h), <π₂ (π₁ h), π₂ h>>;
|
||||
|
||||
-- A ∨ (B ∨ C) => (A ∨ B) ∨ C
|
||||
def or_assoc_l (h : A ∨ (B ∨ C)) : (A ∨ B) ∨ C :=
|
||||
|
|
@ -221,21 +200,15 @@ section Theorems
|
|||
|
||||
-- A ∧ (B ∨ C) => A ∧ B ∨ A ∧ C
|
||||
def and_distrib_l_or (h : A ∧ (B ∨ C)) : A ∧ B ∨ A ∧ C :=
|
||||
or_elim B C (A ∧ B ∨ A ∧ C) (and_elim_r A (B ∨ C) h)
|
||||
(fun (b : B) => or_intro_l (A ∧ B) (A ∧ C)
|
||||
(and_intro A B (and_elim_l A (B ∨ C) h) b))
|
||||
(fun (c : C) => or_intro_r (A ∧ B) (A ∧ C)
|
||||
(and_intro A C (and_elim_l A (B ∨ C) h) c));
|
||||
or_elim B C (A ∧ B ∨ A ∧ C) (π₂ h)
|
||||
(fun (b : B) => or_intro_l (A ∧ B) (A ∧ C) <π₁ h, b>)
|
||||
(fun (c : C) => or_intro_r (A ∧ B) (A ∧ C) <π₁ h, c>);
|
||||
|
||||
-- A ∧ B ∨ A ∧ C => A ∧ (B ∨ C)
|
||||
def and_factor_l_or (h : A ∧ B ∨ A ∧ C) : A ∧ (B ∨ C) :=
|
||||
or_elim (A ∧ B) (A ∧ C) (A ∧ (B ∨ C)) h
|
||||
(fun (ab : A ∧ B) => and_intro A (B ∨ C)
|
||||
(and_elim_l A B ab)
|
||||
(or_intro_l B C (and_elim_r A B ab)))
|
||||
(fun (ac : A ∧ C) => and_intro A (B ∨ C)
|
||||
(and_elim_l A C ac)
|
||||
(or_intro_r B C (and_elim_r A C ac)));
|
||||
(fun (ab : A ∧ B) => <π₁ ab, or_intro_l B C (π₂ ab)>)
|
||||
(fun (ac : A ∧ C) => <π₁ ac, or_intro_r B C (π₂ ac)>);
|
||||
|
||||
-- Thanks Quinn!
|
||||
-- A ∨ B => ~B => A
|
||||
|
|
|
|||
17
lib/Check.hs
17
lib/Check.hs
|
|
@ -16,6 +16,12 @@ matchPi x mt =
|
|||
(Pi _ a b) -> pure (a, b)
|
||||
t -> throwError $ ExpectedPiType x t
|
||||
|
||||
matchProd :: Expr -> Expr -> ReaderT Env Result (Expr, Expr)
|
||||
matchProd x mt =
|
||||
whnf mt >>= \case
|
||||
(Prod a b) -> pure (a, b)
|
||||
t -> throwError $ ExpectedProdType x t
|
||||
|
||||
findLevel :: Context -> Expr -> ReaderT Env Result Integer
|
||||
findLevel g a = do
|
||||
s <- findType g a
|
||||
|
|
@ -72,6 +78,17 @@ findType g e@(Let _ (Just t) v b) = do
|
|||
_ <- findType g t
|
||||
betaEquiv' e t res
|
||||
pure t
|
||||
findType g (Prod a b) = do
|
||||
aSort <- findType g a
|
||||
bSort <- findType g b
|
||||
liftEither $ compSort a b aSort bSort
|
||||
findType g (Pair a b) = do
|
||||
aType <- findType g a
|
||||
bType <- findType g b
|
||||
validateType g $ Prod aType bType
|
||||
pure $ Prod aType bType
|
||||
findType g (Pi1 x) = fst <$> (findType g x >>= matchProd x)
|
||||
findType g (Pi2 x) = snd <$> (findType g x >>= matchProd x)
|
||||
|
||||
checkType :: Env -> Expr -> Result Expr
|
||||
checkType env t = runReaderT (findType [] t) env
|
||||
|
|
|
|||
|
|
@ -116,6 +116,10 @@ usedVars (I.Let name ascr value body) = saveState $ do
|
|||
ascr' <- traverse usedVars ascr
|
||||
removeName name
|
||||
S.union (ty' `S.union` (ascr' ?: S.empty)) <$> usedVars body
|
||||
usedVars (I.Prod m n) = S.union <$> usedVars m <*> usedVars n
|
||||
usedVars (I.Pair m n) = S.union <$> usedVars m <*> usedVars n
|
||||
usedVars (I.Pi1 x) = usedVars x
|
||||
usedVars (I.Pi2 x) = usedVars x
|
||||
|
||||
-- traverse the body of a definition, adding the necessary section arguments to
|
||||
-- any definitions made within the section
|
||||
|
|
@ -142,6 +146,10 @@ traverseBody (I.Let name ascr value body) = saveState $ do
|
|||
value' <- traverseBody value
|
||||
removeName name
|
||||
I.Let name ascr' value' <$> traverseBody body
|
||||
traverseBody (I.Prod m n) = I.Prod <$> traverseBody m <*> traverseBody n
|
||||
traverseBody (I.Pair m n) = I.Pair <$> traverseBody m <*> traverseBody n
|
||||
traverseBody (I.Pi1 x) = I.Pi1 <$> traverseBody x
|
||||
traverseBody (I.Pi2 x) = I.Pi2 <$> traverseBody x
|
||||
|
||||
mkPi :: (Text, IRExpr) -> IRExpr -> IRExpr
|
||||
mkPi (param, typ) = I.Pi param typ
|
||||
|
|
@ -206,3 +214,7 @@ elaborate ir = evalState (elaborate' ir) []
|
|||
ty' <- elaborate' ty
|
||||
modify (name :)
|
||||
E.Let name (Just ty') val' <$> elaborate' body
|
||||
elaborate' (I.Prod m n) = E.Prod <$> elaborate' m <*> elaborate' n
|
||||
elaborate' (I.Pair m n) = E.Pair <$> elaborate' m <*> elaborate' n
|
||||
elaborate' (I.Pi1 x) = E.Pi1 <$> elaborate' x
|
||||
elaborate' (I.Pi2 x) = E.Pi2 <$> elaborate' x
|
||||
|
|
|
|||
|
|
@ -9,6 +9,7 @@ data Error
|
|||
= UnboundVariable Text
|
||||
| NotASort Expr
|
||||
| ExpectedPiType Expr Expr
|
||||
| ExpectedProdType Expr Expr
|
||||
| NotEquivalent Expr Expr Expr
|
||||
| PNMissingType Text
|
||||
| DuplicateDefinition Text
|
||||
|
|
@ -18,6 +19,7 @@ instance Pretty Error where
|
|||
pretty (UnboundVariable x) = "Unbound variable: '" <> pretty x <> "'"
|
||||
pretty (NotASort x) = group $ hang 4 ("Term:" <> line <> pretty x) <> line <> "is not a type"
|
||||
pretty (ExpectedPiType x t) = group $ hang 4 ("Term:" <> line <> pretty x) <> line <> hang 4 ("is not a function, instead is type" <> line <> pretty t)
|
||||
pretty (ExpectedProdType x t) = group $ hang 4 ("Term:" <> line <> pretty x) <> line <> hang 4 ("is not a pair, instead is type" <> line <> pretty t)
|
||||
pretty (NotEquivalent a a' e) =
|
||||
group $
|
||||
hang 4 ("Cannot unify" <> line <> pretty a)
|
||||
|
|
|
|||
26
lib/Eval.hs
26
lib/Eval.hs
|
|
@ -45,6 +45,10 @@ subst k s (App m n) = App (subst k s m) (subst k s n)
|
|||
subst k s (Abs x m n) = Abs x (subst k s m) (subst (k + 1) (incIndices s) n)
|
||||
subst k s (Pi x m n) = Pi x (subst k s m) (subst (k + 1) (incIndices s) n)
|
||||
subst k s (Let x t v b) = Let x t (subst k s v) (subst (k + 1) (incIndices s) b)
|
||||
subst k s (Prod m n) = Prod (subst k s m) (subst k s n)
|
||||
subst k s (Pair m n) = Pair (subst k s m) (subst k s n)
|
||||
subst k s (Pi1 x) = Pi1 (subst k s x)
|
||||
subst k s (Pi2 x) = Pi2 (subst k s x)
|
||||
|
||||
envLookupVal :: Text -> ReaderT Env Result Expr
|
||||
envLookupVal n = asks ((_val <$>) . M.lookup n) >>= maybe (throwError $ UnboundVariable n) pure
|
||||
|
|
@ -59,6 +63,12 @@ reduce (Abs x t v) = Abs x <$> reduce t <*> reduce v
|
|||
reduce (Pi x t v) = Pi x <$> reduce t <*> reduce v
|
||||
reduce (Free n) = envLookupVal n
|
||||
reduce (Let _ _ v b) = pure $ subst 0 v b
|
||||
reduce (Prod a b) = Prod <$> reduce a <*> reduce b
|
||||
reduce (Pair a b) = Pair <$> reduce a <*> reduce b
|
||||
reduce (Pi1 (Pair a _)) = pure a
|
||||
reduce (Pi2 (Pair _ b)) = pure b
|
||||
reduce (Pi1 x) = Pi1 <$> reduce x
|
||||
reduce (Pi2 x) = Pi2 <$> reduce x
|
||||
reduce e = pure e
|
||||
|
||||
normalize :: Expr -> ReaderT Env Result Expr
|
||||
|
|
@ -78,6 +88,18 @@ whnf (App m n) = do
|
|||
else whnf $ App m' n
|
||||
whnf (Free n) = envLookupVal n >>= whnf
|
||||
whnf (Let _ _ v b) = whnf $ subst 0 v b
|
||||
whnf (Pi1 (Pair a _)) = pure a
|
||||
whnf (Pi2 (Pair _ b)) = pure b
|
||||
whnf (Pi1 x) = do
|
||||
x' <- whnf x
|
||||
if x == x'
|
||||
then pure $ Pi1 x
|
||||
else whnf $ Pi1 x'
|
||||
whnf (Pi2 x) = do
|
||||
x' <- whnf x
|
||||
if x == x'
|
||||
then pure $ Pi2 x
|
||||
else whnf $ Pi2 x'
|
||||
whnf e = pure e
|
||||
|
||||
betaEquiv :: Expr -> Expr -> ReaderT Env Result Bool
|
||||
|
|
@ -99,6 +121,10 @@ betaEquiv e1 e2
|
|||
(Pi _ t1 v1, Pi _ t2 v2) -> (&&) <$> betaEquiv t1 t2 <*> betaEquiv v1 v2
|
||||
(Let _ _ v b, e) -> betaEquiv (subst 0 v b) e
|
||||
(e, Let _ _ v b) -> betaEquiv (subst 0 v b) e
|
||||
(Prod a b, Prod a' b') -> (&&) <$> betaEquiv a a' <*> betaEquiv b b'
|
||||
(Pair a b, Pair a' b') -> (&&) <$> betaEquiv a a' <*> betaEquiv b b'
|
||||
(Pi1 x, Pi1 x') -> betaEquiv x x'
|
||||
(Pi2 x, Pi2 x') -> betaEquiv x x'
|
||||
_ -> pure False -- remaining cases impossible, false, or redundant
|
||||
|
||||
betaEquiv' :: Expr -> Expr -> Expr -> ReaderT Env Result ()
|
||||
|
|
|
|||
20
lib/Expr.hs
20
lib/Expr.hs
|
|
@ -15,6 +15,10 @@ data Expr where
|
|||
Abs :: Text -> Expr -> Expr -> Expr
|
||||
Pi :: Text -> Expr -> Expr -> Expr
|
||||
Let :: Text -> Maybe Expr -> Expr -> Expr -> Expr
|
||||
Prod :: Expr -> Expr -> Expr
|
||||
Pair :: Expr -> Expr -> Expr
|
||||
Pi1 :: Expr -> Expr
|
||||
Pi2 :: Expr -> Expr
|
||||
deriving (Show, Ord)
|
||||
|
||||
instance Pretty Expr where
|
||||
|
|
@ -30,6 +34,10 @@ instance Eq Expr where
|
|||
(Abs _ t1 b1) == (Abs _ t2 b2) = t1 == t2 && b1 == b2
|
||||
(Pi _ t1 b1) == (Pi _ t2 b2) = t1 == t2 && b1 == b2
|
||||
(Let _ _ v1 b1) == (Let _ _ v2 b2) = v1 == v2 && b1 == b2
|
||||
(Prod x1 y1) == (Prod x2 y2) = x1 == x2 && y1 == y2
|
||||
(Pair x1 y1) == (Pair x2 y2) = x1 == x2 && y1 == y2
|
||||
(Pi1 x) == (Pi1 y) = x == y
|
||||
(Pi2 x) == (Pi2 y) = x == y
|
||||
_ == _ = False
|
||||
|
||||
occursFree :: Integer -> Expr -> Bool
|
||||
|
|
@ -42,6 +50,10 @@ occursFree n (App a b) = on (||) (occursFree n) a b
|
|||
occursFree n (Abs _ a b) = occursFree n a || occursFree (n + 1) b
|
||||
occursFree n (Pi _ a b) = occursFree n a || occursFree (n + 1) b
|
||||
occursFree n (Let _ _ v b) = occursFree n v || occursFree (n + 1) b
|
||||
occursFree n (Prod x y) = occursFree n x || occursFree n y
|
||||
occursFree n (Pair x y) = occursFree n x || occursFree n y
|
||||
occursFree n (Pi1 x) = occursFree n x
|
||||
occursFree n (Pi2 x) = occursFree n x
|
||||
|
||||
shiftIndices :: Integer -> Integer -> Expr -> Expr
|
||||
shiftIndices d c (Var x k)
|
||||
|
|
@ -55,6 +67,10 @@ shiftIndices d c (App m n) = App (shiftIndices d c m) (shiftIndices d c n)
|
|||
shiftIndices d c (Abs x m n) = Abs x (shiftIndices d c m) (shiftIndices d (c + 1) n)
|
||||
shiftIndices d c (Pi x m n) = Pi x (shiftIndices d c m) (shiftIndices d (c + 1) n)
|
||||
shiftIndices d c (Let x t v b) = Let x t (shiftIndices d c v) (shiftIndices d (c + 1) b)
|
||||
shiftIndices d c (Prod m n) = Prod (shiftIndices d c m) (shiftIndices d c n)
|
||||
shiftIndices d c (Pair m n) = Pair (shiftIndices d c m) (shiftIndices d c n)
|
||||
shiftIndices d c (Pi1 x) = Pi1 (shiftIndices d c x)
|
||||
shiftIndices d c (Pi2 x) = Pi2 (shiftIndices d c x)
|
||||
|
||||
incIndices :: Expr -> Expr
|
||||
incIndices = shiftIndices 1 0
|
||||
|
|
@ -206,6 +222,10 @@ prettyExpr k expr = case expr of
|
|||
where
|
||||
(binds, body) = collectLets expr
|
||||
bindings = sep $ map pretty binds
|
||||
(Prod x y) -> parens $ parens (pretty x) <+> "×" <+> parens (pretty y)
|
||||
(Pair x y) -> parens $ pretty x <> "," <+> pretty y
|
||||
(Pi1 x) -> parens $ "π₁" <+> parens (pretty x)
|
||||
(Pi2 x) -> parens $ "π₂" <+> parens (pretty x)
|
||||
|
||||
prettyT :: Expr -> Text
|
||||
prettyT = renderStrict . layoutSmart defaultLayoutOptions . pretty
|
||||
|
|
|
|||
10
lib/IR.hs
10
lib/IR.hs
|
|
@ -27,6 +27,16 @@ data IRExpr
|
|||
, letValue :: IRExpr
|
||||
, letBody :: IRExpr
|
||||
}
|
||||
| Prod
|
||||
{ prodLeft :: IRExpr
|
||||
, prodRight :: IRExpr
|
||||
}
|
||||
| Pair
|
||||
{ pairLeft :: IRExpr
|
||||
, pairRight :: IRExpr
|
||||
}
|
||||
| Pi1 IRExpr
|
||||
| Pi2 IRExpr
|
||||
deriving (Show, Eq, Ord)
|
||||
|
||||
data IRSectionDef
|
||||
|
|
|
|||
|
|
@ -174,8 +174,26 @@ pSort = lexeme $ pStar <|> pSquare
|
|||
pOpSection :: Parser IRExpr
|
||||
pOpSection = lexeme $ parens $ Var <$> pSymbol
|
||||
|
||||
pProd :: Parser IRExpr
|
||||
pProd = lexeme $ between (char '{') (char '}') $ do
|
||||
left <- pIRExpr
|
||||
_ <- symbol "×"
|
||||
Prod left <$> pIRExpr
|
||||
|
||||
pPair :: Parser IRExpr
|
||||
pPair = lexeme $ between (char '<') (char '>') $ do
|
||||
left <- pIRExpr
|
||||
_ <- symbol ","
|
||||
Pair left <$> pIRExpr
|
||||
|
||||
pPi1 :: Parser IRExpr
|
||||
pPi1 = lexeme $ symbol "π₁" >> Pi1 <$> pIRExpr
|
||||
|
||||
pPi2 :: Parser IRExpr
|
||||
pPi2 = lexeme $ symbol "π₂" >> Pi2 <$> pIRExpr
|
||||
|
||||
pTerm :: Parser IRExpr
|
||||
pTerm = lexeme $ label "term" $ choice [pSort, pPureVar, pVar, try pOpSection, parens pIRExpr]
|
||||
pTerm = lexeme $ label "term" $ choice [pSort, pPi1, pPi2, pPureVar, pVar, pProd, pPair, try pOpSection, parens pIRExpr]
|
||||
|
||||
pInfix :: Parser IRExpr
|
||||
pInfix = parseWithPrec 0
|
||||
|
|
|
|||
Loading…
Reference in a new issue