Reverted back to commit 2c1f193d77

This commit is contained in:
William Ball 2025-01-25 10:39:50 -08:00
parent 6b965fda1d
commit 5994096bb1
Signed by: wball
GPG key ID: B8682D8137B70765
8 changed files with 135 additions and 68 deletions

View file

@ -11,7 +11,7 @@ def false_elim (A : ★) (contra : false) : A := contra A;
-- True -- True
def true : ★ := forall (A : ★), A -> A; def true : ★ := forall (A : ★), A A;
def true_intro : true := [A : ★][x : A] x; def true_intro : true := [A : ★][x : A] x;
@ -19,10 +19,10 @@ def true_intro : true := [A : ★][x : A] x;
-- Negation -- Negation
def not (A : ★) : ★ := A -> false; def not (A : ★) : ★ := A false;
-- introduction rule (kinda just the definition) -- introduction rule (kinda just the definition)
def not_intro (A : ★) (h : A -> false) : not A := h; def not_intro (A : ★) (h : A false) : not A := h;
-- elimination rule -- elimination rule
def not_elim (A B : ★) (a : A) (na : not A) : B := na a B; def not_elim (A B : ★) (a : A) (na : not A) : B := na a B;
@ -42,31 +42,29 @@ infixl 10 ∧;
def and_intro (A B : ★) (a : A) (b : B) : A ∧ B := <a, b>; def and_intro (A B : ★) (a : A) (b : B) : A ∧ B := <a, b>;
-- left elimination rule -- left elimination rule
def and_elim_l (A B : ★) (ab : A ∧ B) : A := def and_elim_l (A B : ★) (ab : A ∧ B) : A := π₁ ab;
ab A (fun (a : A) (b : B) => a);
-- right elimination rule -- right elimination rule
def and_elim_r (A B : ★) (ab : A ∧ B) : B := def and_elim_r (A B : ★) (ab : A ∧ B) : B := π₂ ab;
ab B (fun (a : A) (b : B) => b);
-- -------------------------------------------------------------------------------------------------------------- -- --------------------------------------------------------------------------------------------------------------
-- Disjunction -- Disjunction
-- 2nd order disjunction -- 2nd order disjunction
def (A B : ★) : ★ := forall (C : ★), (A -> C) -> (B -> C) -> C; def (A B : ★) : ★ := forall (C : ★), (A → C) → (B → C) → C;
infixl 5 ; infixl 5 ;
-- left introduction rule -- left introduction rule
def or_intro_l (A B : ★) (a : A) : A B := def or_intro_l (A B : ★) (a : A) : A B :=
fun (C : ★) (ha : A -> C) (hb : B -> C) => ha a; fun (C : ★) (ha : A → C) (hb : B → C) => ha a;
-- right introduction rule -- right introduction rule
def or_intro_r (A B : ★) (b : B) : A B := def or_intro_r (A B : ★) (b : B) : A B :=
fun (C : ★) (ha : A -> C) (hb : B -> C) => hb b; fun (C : ★) (ha : A → C) (hb : B → C) => hb b;
-- elimination rule (kinda just the definition) -- elimination rule (kinda just the definition)
def or_elim (A B C : ★) (ab : A B) (ha : A -> C) (hb : B -> C) : C := def or_elim (A B C : ★) (ab : A B) (ha : A → C) (hb : B → C) : C :=
ab C ha hb; ab C ha hb;
-- -------------------------------------------------------------------------------------------------------------- -- --------------------------------------------------------------------------------------------------------------
@ -74,14 +72,14 @@ def or_elim (A B C : ★) (ab : A B) (ha : A -> C) (hb : B -> C) : C :=
-- Existential -- Existential
-- 2nd order existential -- 2nd order existential
def exists (A : ★) (P : A -> ★) : ★ := forall (C : ★), (forall (x : A), P x -> C) -> C; def exists (A : ★) (P : A → ★) : ★ := forall (C : ★), (forall (x : A), P x → C) → C;
-- introduction rule -- introduction rule
def exists_intro (A : ★) (P : A -> ★) (a : A) (h : P a) : exists A P := def exists_intro (A : ★) (P : A ★) (a : A) (h : P a) : exists A P :=
fun (C : ★) (g : forall (x : A), P x -> C) => g a h; fun (C : ★) (g : forall (x : A), P x C) => g a h;
-- elimination rule (kinda just the definition) -- elimination rule (kinda just the definition)
def exists_elim (A B : ★) (P : A -> ★) (ex_a : exists A P) (h : forall (a : A), P a -> B) : B := def exists_elim (A B : ★) (P : A → ★) (ex_a : exists A P) (h : forall (a : A), P a → B) : B :=
ex_a B h; ex_a B h;
-- -------------------------------------------------------------------------------------------------------------- -- --------------------------------------------------------------------------------------------------------------
@ -89,53 +87,53 @@ def exists_elim (A B : ★) (P : A -> ★) (ex_a : exists A P) (h : forall (a :
-- Universal -- Universal
-- 2nd order universal (just ∏, including it for completeness) -- 2nd order universal (just ∏, including it for completeness)
def all (A : ★) (P : A -> ★) : ★ := forall (a : A), P a; def all (A : ★) (P : A ★) : ★ := forall (a : A), P a;
-- introduction rule -- introduction rule
def all_intro (A : ★) (P : A -> ★) (h : forall (a : A), P a) : all A P := h; def all_intro (A : ★) (P : A ★) (h : forall (a : A), P a) : all A P := h;
-- elimination rule -- elimination rule
def all_elim (A : ★) (P : A -> ★) (h_all : all A P) (a : A) : P a := h_all a; def all_elim (A : ★) (P : A ★) (h_all : all A P) (a : A) : P a := h_all a;
-- -------------------------------------------------------------------------------------------------------------- -- --------------------------------------------------------------------------------------------------------------
-- Equality -- Equality
-- 2nd order Leibniz equality -- 2nd order Leibniz equality
def eq (A : ★) (x y : A) := forall (P : A -> ★), P x -> P y; def eq (A : ★) (x y : A) := forall (P : A → ★), P x → P y;
-- equality is reflexive -- equality is reflexive
def eq_refl (A : ★) (x : A) : eq A x x := fun (P : A -> ★) (Hx : P x) => Hx; def eq_refl (A : ★) (x : A) : eq A x x := fun (P : A ★) (Hx : P x) => Hx;
-- equality is symmetric -- equality is symmetric
def eq_sym (A : ★) (x y : A) (Hxy : eq A x y) : eq A y x := fun (P : A -> ★) (Hy : P y) => def eq_sym (A : ★) (x y : A) (Hxy : eq A x y) : eq A y x := fun (P : A ★) (Hy : P y) =>
Hxy (fun (z : A) => P z -> P x) (fun (Hx : P x) => Hx) Hy; Hxy (fun (z : A) => P z P x) (fun (Hx : P x) => Hx) Hy;
-- equality is transitive -- equality is transitive
def eq_trans (A : ★) (x y z : A) (Hxy : eq A x y) (Hyz : eq A y z) : eq A x z := fun (P : A -> ★) (Hx : P x) => def eq_trans (A : ★) (x y z : A) (Hxy : eq A x y) (Hyz : eq A y z) : eq A x z := fun (P : A ★) (Hx : P x) =>
Hyz P (Hxy P Hx); Hyz P (Hxy P Hx);
-- equality is a universal congruence -- equality is a universal congruence
def eq_cong (A B : ★) (x y : A) (f : A -> B) (H : eq A x y) : eq B (f x) (f y) := def eq_cong (A B : ★) (x y : A) (f : A B) (H : eq A x y) : eq B (f x) (f y) :=
fun (P : B -> ★) (Hfx : P (f x)) => fun (P : B ★) (Hfx : P (f x)) =>
H (fun (a : A) => P (f a)) Hfx; H (fun (a : A) => P (f a)) Hfx;
-- -------------------------------------------------------------------------------------------------------------- -- --------------------------------------------------------------------------------------------------------------
-- unique existence -- unique existence
def exists_uniq (A : ★) (P : A -> ★) : ★ := def exists_uniq (A : ★) (P : A ★) : ★ :=
exists A (fun (x : A) => P x ∧ (forall (y : A), P y -> eq A x y)); exists A (fun (x : A) => P x ∧ (forall (y : A), P y eq A x y));
def exists_uniq_elim (A B : ★) (P : A -> ★) (ex_a : exists_uniq A P) (h : forall (a : A), P a -> (forall (y : A), P y -> eq A a y) -> B) : B := def exists_uniq_elim (A B : ★) (P : A → ★) (ex_a : exists_uniq A P) (h : forall (a : A), P a → (forall (y : A), P y → eq A a y) → B) : B :=
exists_elim A B (fun (x : A) => P x ∧ (forall (y : A), P y -> eq A x y)) ex_a exists_elim A B (fun (x : A) => P x ∧ (forall (y : A), P y eq A x y)) ex_a
(fun (a : A) (h2 : P a ∧ (forall (y : A), P y -> eq A a y)) => (fun (a : A) (h2 : P a ∧ (forall (y : A), P y eq A a y)) =>
h a (and_elim_l (P a) (forall (y : A), P y -> eq A a y) h2) h a (and_elim_l (P a) (forall (y : A), P y eq A a y) h2)
(and_elim_r (P a) (forall (y : A), P y -> eq A a y) h2)); (and_elim_r (P a) (forall (y : A), P y eq A a y) h2));
def exists_uniq_t (A : ★) : ★ := def exists_uniq_t (A : ★) : ★ :=
exists A (fun (x : A) => forall (y : A), eq A x y); exists A (fun (x : A) => forall (y : A), eq A x y);
def exists_uniq_t_elim (A B : ★) (ex_a : exists_uniq_t A) (h : forall (a : A), (forall (y : A), eq A a y) -> B) : B := def exists_uniq_t_elim (A B : ★) (ex_a : exists_uniq_t A) (h : forall (a : A), (forall (y : A), eq A a y) B) : B :=
exists_elim A B (fun (x : A) => forall (y : A), eq A x y) ex_a (fun (a : A) (h2 : forall (y : A), eq A a y) => h a h2); exists_elim A B (fun (x : A) => forall (y : A), eq A x y) ex_a (fun (a : A) (h2 : forall (y : A), eq A a y) => h a h2);
-- -------------------------------------------------------------------------------------------------------------- -- --------------------------------------------------------------------------------------------------------------
@ -154,16 +152,14 @@ section Theorems
-- ~A ∧ ~B => ~(A B) -- ~A ∧ ~B => ~(A B)
def de_morgan2 (h : not A ∧ not B) : not (A B) := def de_morgan2 (h : not A ∧ not B) : not (A B) :=
fun (contra : A B) => fun (contra : A B) =>
or_elim A B false contra or_elim A B false contra (π₁ h) (π₂ h);
(and_elim_l (not A) (not B) h)
(and_elim_r (not A) (not B) h);
-- ~A ~B => ~(A ∧ B) -- ~A ~B => ~(A ∧ B)
def de_morgan3 (h : not A not B) : not (A ∧ B) := def de_morgan3 (h : not A not B) : not (A ∧ B) :=
fun (contra : A ∧ B) => fun (contra : A ∧ B) =>
or_elim (not A) (not B) false h or_elim (not A) (not B) false h
(fun (na : not A) => na (and_elim_l A B contra)) (fun (na : not A) => na (π₁ contra))
(fun (nb : not B) => nb (and_elim_r A B contra)); (fun (nb : not B) => nb (π₂ contra));
-- the last one (~(A ∧ B) => ~A ~B) is not possible constructively -- the last one (~(A ∧ B) => ~A ~B) is not possible constructively
@ -220,7 +216,7 @@ section Theorems
or_elim A B A hor ([a : A] a) ([b : B] nb b A); or_elim A B A hor ([a : A] a) ([b : B] nb b A);
-- (A => B) => ~B => ~A -- (A => B) => ~B => ~A
def contrapositive (f : A -> B) (nb : not B) : not A := def contrapositive (f : A B) (nb : not B) : not A :=
fun (a : A) => nb (f a); fun (a : A) => nb (f a);
end Theorems end Theorems

View file

@ -16,6 +16,12 @@ matchPi x mt =
(Pi _ a b) -> pure (a, b) (Pi _ a b) -> pure (a, b)
t -> throwError $ ExpectedPiType x t t -> throwError $ ExpectedPiType x t
matchProd :: Expr -> Expr -> ReaderT Env Result (Expr, Expr)
matchProd x mt =
whnf mt >>= \case
(Prod a b) -> pure (a, b)
t -> throwError $ ExpectedProdType x t
findLevel :: Context -> Expr -> ReaderT Env Result Integer findLevel :: Context -> Expr -> ReaderT Env Result Integer
findLevel g a = do findLevel g a = do
s <- findType g a s <- findType g a
@ -72,6 +78,17 @@ findType g e@(Let _ (Just t) v b) = do
_ <- findType g t _ <- findType g t
betaEquiv' e t res betaEquiv' e t res
pure t pure t
findType g (Prod a b) = do
aSort <- findType g a
bSort <- findType g b
liftEither $ compSort a b aSort bSort
findType g (Pair a b) = do
aType <- findType g a
bType <- findType g b
validateType g $ Prod aType bType
pure $ Prod aType bType
findType g (Pi1 x) = fst <$> (findType g x >>= matchProd x)
findType g (Pi2 x) = snd <$> (findType g x >>= matchProd x)
checkType :: Env -> Expr -> Result Expr checkType :: Env -> Expr -> Result Expr
checkType env t = runReaderT (findType [] t) env checkType env t = runReaderT (findType [] t) env

View file

@ -116,6 +116,10 @@ usedVars (I.Let name ascr value body) = saveState $ do
ascr' <- traverse usedVars ascr ascr' <- traverse usedVars ascr
removeName name removeName name
S.union (ty' `S.union` (ascr' ?: S.empty)) <$> usedVars body S.union (ty' `S.union` (ascr' ?: S.empty)) <$> usedVars body
usedVars (I.Prod m n) = S.union <$> usedVars m <*> usedVars n
usedVars (I.Pair m n) = S.union <$> usedVars m <*> usedVars n
usedVars (I.Pi1 x) = usedVars x
usedVars (I.Pi2 x) = usedVars x
-- traverse the body of a definition, adding the necessary section arguments to -- traverse the body of a definition, adding the necessary section arguments to
-- any definitions made within the section -- any definitions made within the section
@ -142,6 +146,10 @@ traverseBody (I.Let name ascr value body) = saveState $ do
value' <- traverseBody value value' <- traverseBody value
removeName name removeName name
I.Let name ascr' value' <$> traverseBody body I.Let name ascr' value' <$> traverseBody body
traverseBody (I.Prod m n) = I.Prod <$> traverseBody m <*> traverseBody n
traverseBody (I.Pair m n) = I.Pair <$> traverseBody m <*> traverseBody n
traverseBody (I.Pi1 x) = I.Pi1 <$> traverseBody x
traverseBody (I.Pi2 x) = I.Pi2 <$> traverseBody x
mkPi :: (Text, IRExpr) -> IRExpr -> IRExpr mkPi :: (Text, IRExpr) -> IRExpr -> IRExpr
mkPi (param, typ) = I.Pi param typ mkPi (param, typ) = I.Pi param typ
@ -206,3 +214,7 @@ elaborate ir = evalState (elaborate' ir) []
ty' <- elaborate' ty ty' <- elaborate' ty
modify (name :) modify (name :)
E.Let name (Just ty') val' <$> elaborate' body E.Let name (Just ty') val' <$> elaborate' body
elaborate' (I.Prod m n) = E.Prod <$> elaborate' m <*> elaborate' n
elaborate' (I.Pair m n) = E.Pair <$> elaborate' m <*> elaborate' n
elaborate' (I.Pi1 x) = E.Pi1 <$> elaborate' x
elaborate' (I.Pi2 x) = E.Pi2 <$> elaborate' x

View file

@ -9,6 +9,7 @@ data Error
= UnboundVariable Text = UnboundVariable Text
| NotASort Expr | NotASort Expr
| ExpectedPiType Expr Expr | ExpectedPiType Expr Expr
| ExpectedProdType Expr Expr
| NotEquivalent Expr Expr Expr | NotEquivalent Expr Expr Expr
| PNMissingType Text | PNMissingType Text
| DuplicateDefinition Text | DuplicateDefinition Text
@ -18,6 +19,7 @@ instance Pretty Error where
pretty (UnboundVariable x) = "Unbound variable: '" <> pretty x <> "'" pretty (UnboundVariable x) = "Unbound variable: '" <> pretty x <> "'"
pretty (NotASort x) = group $ hang 4 ("Term:" <> line <> pretty x) <> line <> "is not a type" pretty (NotASort x) = group $ hang 4 ("Term:" <> line <> pretty x) <> line <> "is not a type"
pretty (ExpectedPiType x t) = group $ hang 4 ("Term:" <> line <> pretty x) <> line <> hang 4 ("is not a function, instead is type" <> line <> pretty t) pretty (ExpectedPiType x t) = group $ hang 4 ("Term:" <> line <> pretty x) <> line <> hang 4 ("is not a function, instead is type" <> line <> pretty t)
pretty (ExpectedProdType x t) = group $ hang 4 ("Term:" <> line <> pretty x) <> line <> hang 4 ("is not a pair, instead is type" <> line <> pretty t)
pretty (NotEquivalent a a' e) = pretty (NotEquivalent a a' e) =
group $ group $
hang 4 ("Cannot unify" <> line <> pretty a) hang 4 ("Cannot unify" <> line <> pretty a)

View file

@ -45,6 +45,10 @@ subst k s (App m n) = App (subst k s m) (subst k s n)
subst k s (Abs x m n) = Abs x (subst k s m) (subst (k + 1) (incIndices s) n) subst k s (Abs x m n) = Abs x (subst k s m) (subst (k + 1) (incIndices s) n)
subst k s (Pi x m n) = Pi x (subst k s m) (subst (k + 1) (incIndices s) n) subst k s (Pi x m n) = Pi x (subst k s m) (subst (k + 1) (incIndices s) n)
subst k s (Let x t v b) = Let x t (subst k s v) (subst (k + 1) (incIndices s) b) subst k s (Let x t v b) = Let x t (subst k s v) (subst (k + 1) (incIndices s) b)
subst k s (Prod m n) = Prod (subst k s m) (subst k s n)
subst k s (Pair m n) = Pair (subst k s m) (subst k s n)
subst k s (Pi1 x) = Pi1 (subst k s x)
subst k s (Pi2 x) = Pi2 (subst k s x)
envLookupVal :: Text -> ReaderT Env Result Expr envLookupVal :: Text -> ReaderT Env Result Expr
envLookupVal n = asks ((_val <$>) . M.lookup n) >>= maybe (throwError $ UnboundVariable n) pure envLookupVal n = asks ((_val <$>) . M.lookup n) >>= maybe (throwError $ UnboundVariable n) pure
@ -59,6 +63,12 @@ reduce (Abs x t v) = Abs x <$> reduce t <*> reduce v
reduce (Pi x t v) = Pi x <$> reduce t <*> reduce v reduce (Pi x t v) = Pi x <$> reduce t <*> reduce v
reduce (Free n) = envLookupVal n reduce (Free n) = envLookupVal n
reduce (Let _ _ v b) = pure $ subst 0 v b reduce (Let _ _ v b) = pure $ subst 0 v b
reduce (Prod a b) = Prod <$> reduce a <*> reduce b
reduce (Pair a b) = Pair <$> reduce a <*> reduce b
reduce (Pi1 (Pair a _)) = pure a
reduce (Pi2 (Pair _ b)) = pure b
reduce (Pi1 x) = Pi1 <$> reduce x
reduce (Pi2 x) = Pi2 <$> reduce x
reduce e = pure e reduce e = pure e
normalize :: Expr -> ReaderT Env Result Expr normalize :: Expr -> ReaderT Env Result Expr
@ -78,6 +88,18 @@ whnf (App m n) = do
else whnf $ App m' n else whnf $ App m' n
whnf (Free n) = envLookupVal n >>= whnf whnf (Free n) = envLookupVal n >>= whnf
whnf (Let _ _ v b) = whnf $ subst 0 v b whnf (Let _ _ v b) = whnf $ subst 0 v b
whnf (Pi1 (Pair a _)) = pure a
whnf (Pi2 (Pair _ b)) = pure b
whnf (Pi1 x) = do
x' <- whnf x
if x == x'
then pure $ Pi1 x
else whnf $ Pi1 x'
whnf (Pi2 x) = do
x' <- whnf x
if x == x'
then pure $ Pi2 x
else whnf $ Pi2 x'
whnf e = pure e whnf e = pure e
betaEquiv :: Expr -> Expr -> ReaderT Env Result Bool betaEquiv :: Expr -> Expr -> ReaderT Env Result Bool
@ -99,6 +121,10 @@ betaEquiv e1 e2
(Pi _ t1 v1, Pi _ t2 v2) -> (&&) <$> betaEquiv t1 t2 <*> betaEquiv v1 v2 (Pi _ t1 v1, Pi _ t2 v2) -> (&&) <$> betaEquiv t1 t2 <*> betaEquiv v1 v2
(Let _ _ v b, e) -> betaEquiv (subst 0 v b) e (Let _ _ v b, e) -> betaEquiv (subst 0 v b) e
(e, Let _ _ v b) -> betaEquiv (subst 0 v b) e (e, Let _ _ v b) -> betaEquiv (subst 0 v b) e
(Prod a b, Prod a' b') -> (&&) <$> betaEquiv a a' <*> betaEquiv b b'
(Pair a b, Pair a' b') -> (&&) <$> betaEquiv a a' <*> betaEquiv b b'
(Pi1 x, Pi1 x') -> betaEquiv x x'
(Pi2 x, Pi2 x') -> betaEquiv x x'
_ -> pure False -- remaining cases impossible, false, or redundant _ -> pure False -- remaining cases impossible, false, or redundant
betaEquiv' :: Expr -> Expr -> Expr -> ReaderT Env Result () betaEquiv' :: Expr -> Expr -> Expr -> ReaderT Env Result ()

View file

@ -15,6 +15,10 @@ data Expr where
Abs :: Text -> Expr -> Expr -> Expr Abs :: Text -> Expr -> Expr -> Expr
Pi :: Text -> Expr -> Expr -> Expr Pi :: Text -> Expr -> Expr -> Expr
Let :: Text -> Maybe Expr -> Expr -> Expr -> Expr Let :: Text -> Maybe Expr -> Expr -> Expr -> Expr
Prod :: Expr -> Expr -> Expr
Pair :: Expr -> Expr -> Expr
Pi1 :: Expr -> Expr
Pi2 :: Expr -> Expr
deriving (Show, Ord) deriving (Show, Ord)
instance Pretty Expr where instance Pretty Expr where
@ -30,6 +34,10 @@ instance Eq Expr where
(Abs _ t1 b1) == (Abs _ t2 b2) = t1 == t2 && b1 == b2 (Abs _ t1 b1) == (Abs _ t2 b2) = t1 == t2 && b1 == b2
(Pi _ t1 b1) == (Pi _ t2 b2) = t1 == t2 && b1 == b2 (Pi _ t1 b1) == (Pi _ t2 b2) = t1 == t2 && b1 == b2
(Let _ _ v1 b1) == (Let _ _ v2 b2) = v1 == v2 && b1 == b2 (Let _ _ v1 b1) == (Let _ _ v2 b2) = v1 == v2 && b1 == b2
(Prod x1 y1) == (Prod x2 y2) = x1 == x2 && y1 == y2
(Pair x1 y1) == (Pair x2 y2) = x1 == x2 && y1 == y2
(Pi1 x) == (Pi1 y) = x == y
(Pi2 x) == (Pi2 y) = x == y
_ == _ = False _ == _ = False
occursFree :: Integer -> Expr -> Bool occursFree :: Integer -> Expr -> Bool
@ -42,6 +50,10 @@ occursFree n (App a b) = on (||) (occursFree n) a b
occursFree n (Abs _ a b) = occursFree n a || occursFree (n + 1) b occursFree n (Abs _ a b) = occursFree n a || occursFree (n + 1) b
occursFree n (Pi _ a b) = occursFree n a || occursFree (n + 1) b occursFree n (Pi _ a b) = occursFree n a || occursFree (n + 1) b
occursFree n (Let _ _ v b) = occursFree n v || occursFree (n + 1) b occursFree n (Let _ _ v b) = occursFree n v || occursFree (n + 1) b
occursFree n (Prod x y) = occursFree n x || occursFree n y
occursFree n (Pair x y) = occursFree n x || occursFree n y
occursFree n (Pi1 x) = occursFree n x
occursFree n (Pi2 x) = occursFree n x
shiftIndices :: Integer -> Integer -> Expr -> Expr shiftIndices :: Integer -> Integer -> Expr -> Expr
shiftIndices d c (Var x k) shiftIndices d c (Var x k)
@ -55,6 +67,10 @@ shiftIndices d c (App m n) = App (shiftIndices d c m) (shiftIndices d c n)
shiftIndices d c (Abs x m n) = Abs x (shiftIndices d c m) (shiftIndices d (c + 1) n) shiftIndices d c (Abs x m n) = Abs x (shiftIndices d c m) (shiftIndices d (c + 1) n)
shiftIndices d c (Pi x m n) = Pi x (shiftIndices d c m) (shiftIndices d (c + 1) n) shiftIndices d c (Pi x m n) = Pi x (shiftIndices d c m) (shiftIndices d (c + 1) n)
shiftIndices d c (Let x t v b) = Let x t (shiftIndices d c v) (shiftIndices d (c + 1) b) shiftIndices d c (Let x t v b) = Let x t (shiftIndices d c v) (shiftIndices d (c + 1) b)
shiftIndices d c (Prod m n) = Prod (shiftIndices d c m) (shiftIndices d c n)
shiftIndices d c (Pair m n) = Pair (shiftIndices d c m) (shiftIndices d c n)
shiftIndices d c (Pi1 x) = Pi1 (shiftIndices d c x)
shiftIndices d c (Pi2 x) = Pi2 (shiftIndices d c x)
incIndices :: Expr -> Expr incIndices :: Expr -> Expr
incIndices = shiftIndices 1 0 incIndices = shiftIndices 1 0
@ -206,6 +222,10 @@ prettyExpr k expr = case expr of
where where
(binds, body) = collectLets expr (binds, body) = collectLets expr
bindings = sep $ map pretty binds bindings = sep $ map pretty binds
(Prod x y) -> parens $ parens (pretty x) <+> "×" <+> parens (pretty y)
(Pair x y) -> parens $ pretty x <> "," <+> pretty y
(Pi1 x) -> parens $ "π₁" <+> parens (pretty x)
(Pi2 x) -> parens $ "π₂" <+> parens (pretty x)
prettyT :: Expr -> Text prettyT :: Expr -> Text
prettyT = renderStrict . layoutSmart defaultLayoutOptions . pretty prettyT = renderStrict . layoutSmart defaultLayoutOptions . pretty

View file

@ -27,6 +27,16 @@ data IRExpr
, letValue :: IRExpr , letValue :: IRExpr
, letBody :: IRExpr , letBody :: IRExpr
} }
| Prod
{ prodLeft :: IRExpr
, prodRight :: IRExpr
}
| Pair
{ pairLeft :: IRExpr
, pairRight :: IRExpr
}
| Pi1 IRExpr
| Pi2 IRExpr
deriving (Show, Eq, Ord) deriving (Show, Eq, Ord)
data IRSectionDef data IRSectionDef

View file

@ -17,25 +17,12 @@ import qualified Text.Megaparsec.Char.Lexer as L
newtype TypeError = TE Error newtype TypeError = TE Error
deriving (Eq, Ord) deriving (Eq, Ord)
data InfixDef = InfixDef
{ infixFixity :: Fixity
, infixOp :: Text -> IRExpr -> IRExpr -> IRExpr
}
data Fixity data Fixity
= InfixL Int = InfixL Int
| InfixR Int | InfixR Int
deriving (Eq, Show) deriving (Eq, Show)
type Operators = Map Text InfixDef type Operators = Map Text Fixity
initialOps :: Operators
initialOps =
M.fromAscList
[ ("", InfixDef (InfixR 2) (const $ Pi ""))
, ("->", InfixDef (InfixR 2) (const $ Pi ""))
, ("×", InfixDef (InfixL 10) (const Prod))
]
type Parser = ParsecT TypeError Text (State Operators) type Parser = ParsecT TypeError Text (State Operators)
@ -59,7 +46,7 @@ symbol :: Text -> Parser ()
symbol = void . L.symbol skipSpace symbol = void . L.symbol skipSpace
symbols :: String symbols :: String
symbols = "!@#$%^&*-+=<>,./?[]{}\\|`~'\"∧∨⊙×≅" symbols = "!@#$%^&*-+=<>,./?[]{}\\|`~'\"∧∨⊙×≅"
pKeyword :: Text -> Parser () pKeyword :: Text -> Parser ()
pKeyword keyword = void $ lexeme (string keyword <* notFollowedBy alphaNumChar) pKeyword keyword = void $ lexeme (string keyword <* notFollowedBy alphaNumChar)
@ -219,7 +206,7 @@ pInfix = parseWithPrec 0
op <- lookAhead pSymbol op <- lookAhead pSymbol
operators <- get operators <- get
case M.lookup op operators of case M.lookup op operators of
Just (InfixDef fixity opFun) -> do Just fixity -> do
let (opPrec, nextPrec) = case fixity of let (opPrec, nextPrec) = case fixity of
InfixL p -> (p, p) InfixL p -> (p, p)
InfixR p -> (p, p + 1) InfixR p -> (p, p + 1)
@ -228,19 +215,16 @@ pInfix = parseWithPrec 0
else do else do
_ <- pSymbol _ <- pSymbol
rhs <- parseWithPrec nextPrec rhs <- parseWithPrec nextPrec
continue prec $ opFun op lhs rhs continue prec (App (App (Var op) lhs) rhs)
Nothing -> fail $ "unknown operator '" ++ toString op ++ "'" Nothing -> fail $ "unknown operator '" ++ toString op ++ "'"
pIRExpr :: Parser IRExpr pAppTerm :: Parser IRExpr
pIRExpr = lexeme $ choice [pLAbs, pALAbs, pPAbs, pLet, pInfix] pAppTerm = lexeme $ choice [pLAbs, pALAbs, pPAbs, pLet, pInfix]
-- pAppTerm :: Parser IRExpr pIRExpr :: Parser IRExpr
-- pAppTerm = lexeme $ choice [pLAbs, pALAbs, pPAbs, pLet, pInfix] pIRExpr = lexeme $ do
-- e <- pAppTerm
-- pIRExpr :: Parser IRExpr option e $ (symbol "->" <|> symbol "") >> Pi "" e <$> pIRExpr
-- pIRExpr = lexeme $ do
-- e <- pAppTerm
-- option e $ (symbol "->" <|> symbol "→") >> Pi "" e <$> pIRExpr
pAscription :: Parser IRExpr pAscription :: Parser IRExpr
pAscription = lexeme $ try $ symbol ":" >> label "type" pIRExpr pAscription = lexeme $ try $ symbol ":" >> label "type" pIRExpr
@ -248,7 +232,7 @@ pAscription = lexeme $ try $ symbol ":" >> label "type" pIRExpr
pAxiom :: Parser IRDef pAxiom :: Parser IRDef
pAxiom = lexeme $ label "axiom" $ do pAxiom = lexeme $ label "axiom" $ do
pKeyword "axiom" pKeyword "axiom"
ident <- pIdentifier <|> pSymbol ident <- pIdentifier
params <- pManyParams params <- pManyParams
ascription <- fmap (flip (foldr mkPi) params) pAscription ascription <- fmap (flip (foldr mkPi) params) pAscription
symbol ";" symbol ";"
@ -281,7 +265,7 @@ pFixityDec = do
, InfixR <$> (lexeme (char 'r') >> lexeme L.decimal) , InfixR <$> (lexeme (char 'r') >> lexeme L.decimal)
] ]
ident <- pSymbol ident <- pSymbol
modify $ M.insert ident $ InfixDef fixity $ (App .) . App . Var modify (M.insert ident fixity)
symbol ";" symbol ";"
pSection :: Parser IRSectionDef pSection :: Parser IRSectionDef
@ -300,7 +284,7 @@ pIRProgram :: Parser IRProgram
pIRProgram = skipSpace >> concat <$> some pIRDef pIRProgram = skipSpace >> concat <$> some pIRDef
parserWrapper :: Parser a -> String -> Text -> Either String a parserWrapper :: Parser a -> String -> Text -> Either String a
parserWrapper p filename input = first errorBundlePretty $ evalState (runParserT p filename input) initialOps parserWrapper p filename input = first errorBundlePretty $ evalState (runParserT p filename input) M.empty
parseProgram :: String -> Text -> Either String IRProgram parseProgram :: String -> Text -> Either String IRProgram
parseProgram = parserWrapper pIRProgram parseProgram = parserWrapper pIRProgram