Reverted back to commit 2c1f193d77
This commit is contained in:
parent
6b965fda1d
commit
5994096bb1
8 changed files with 135 additions and 68 deletions
|
|
@ -11,7 +11,7 @@ def false_elim (A : ★) (contra : false) : A := contra A;
|
|||
|
||||
-- True
|
||||
|
||||
def true : ★ := forall (A : ★), A -> A;
|
||||
def true : ★ := forall (A : ★), A → A;
|
||||
|
||||
def true_intro : true := [A : ★][x : A] x;
|
||||
|
||||
|
|
@ -19,10 +19,10 @@ def true_intro : true := [A : ★][x : A] x;
|
|||
|
||||
-- Negation
|
||||
|
||||
def not (A : ★) : ★ := A -> false;
|
||||
def not (A : ★) : ★ := A → false;
|
||||
|
||||
-- introduction rule (kinda just the definition)
|
||||
def not_intro (A : ★) (h : A -> false) : not A := h;
|
||||
def not_intro (A : ★) (h : A → false) : not A := h;
|
||||
|
||||
-- elimination rule
|
||||
def not_elim (A B : ★) (a : A) (na : not A) : B := na a B;
|
||||
|
|
@ -42,31 +42,29 @@ infixl 10 ∧;
|
|||
def and_intro (A B : ★) (a : A) (b : B) : A ∧ B := <a, b>;
|
||||
|
||||
-- left elimination rule
|
||||
def and_elim_l (A B : ★) (ab : A ∧ B) : A :=
|
||||
ab A (fun (a : A) (b : B) => a);
|
||||
def and_elim_l (A B : ★) (ab : A ∧ B) : A := π₁ ab;
|
||||
|
||||
-- right elimination rule
|
||||
def and_elim_r (A B : ★) (ab : A ∧ B) : B :=
|
||||
ab B (fun (a : A) (b : B) => b);
|
||||
def and_elim_r (A B : ★) (ab : A ∧ B) : B := π₂ ab;
|
||||
|
||||
-- --------------------------------------------------------------------------------------------------------------
|
||||
|
||||
-- Disjunction
|
||||
|
||||
-- 2nd order disjunction
|
||||
def ∨ (A B : ★) : ★ := forall (C : ★), (A -> C) -> (B -> C) -> C;
|
||||
def ∨ (A B : ★) : ★ := forall (C : ★), (A → C) → (B → C) → C;
|
||||
infixl 5 ∨;
|
||||
|
||||
-- left introduction rule
|
||||
def or_intro_l (A B : ★) (a : A) : A ∨ B :=
|
||||
fun (C : ★) (ha : A -> C) (hb : B -> C) => ha a;
|
||||
fun (C : ★) (ha : A → C) (hb : B → C) => ha a;
|
||||
|
||||
-- right introduction rule
|
||||
def or_intro_r (A B : ★) (b : B) : A ∨ B :=
|
||||
fun (C : ★) (ha : A -> C) (hb : B -> C) => hb b;
|
||||
fun (C : ★) (ha : A → C) (hb : B → C) => hb b;
|
||||
|
||||
-- elimination rule (kinda just the definition)
|
||||
def or_elim (A B C : ★) (ab : A ∨ B) (ha : A -> C) (hb : B -> C) : C :=
|
||||
def or_elim (A B C : ★) (ab : A ∨ B) (ha : A → C) (hb : B → C) : C :=
|
||||
ab C ha hb;
|
||||
|
||||
-- --------------------------------------------------------------------------------------------------------------
|
||||
|
|
@ -74,14 +72,14 @@ def or_elim (A B C : ★) (ab : A ∨ B) (ha : A -> C) (hb : B -> C) : C :=
|
|||
-- Existential
|
||||
|
||||
-- 2nd order existential
|
||||
def exists (A : ★) (P : A -> ★) : ★ := forall (C : ★), (forall (x : A), P x -> C) -> C;
|
||||
def exists (A : ★) (P : A → ★) : ★ := forall (C : ★), (forall (x : A), P x → C) → C;
|
||||
|
||||
-- introduction rule
|
||||
def exists_intro (A : ★) (P : A -> ★) (a : A) (h : P a) : exists A P :=
|
||||
fun (C : ★) (g : forall (x : A), P x -> C) => g a h;
|
||||
def exists_intro (A : ★) (P : A → ★) (a : A) (h : P a) : exists A P :=
|
||||
fun (C : ★) (g : forall (x : A), P x → C) => g a h;
|
||||
|
||||
-- elimination rule (kinda just the definition)
|
||||
def exists_elim (A B : ★) (P : A -> ★) (ex_a : exists A P) (h : forall (a : A), P a -> B) : B :=
|
||||
def exists_elim (A B : ★) (P : A → ★) (ex_a : exists A P) (h : forall (a : A), P a → B) : B :=
|
||||
ex_a B h;
|
||||
|
||||
-- --------------------------------------------------------------------------------------------------------------
|
||||
|
|
@ -89,53 +87,53 @@ def exists_elim (A B : ★) (P : A -> ★) (ex_a : exists A P) (h : forall (a :
|
|||
-- Universal
|
||||
|
||||
-- 2nd order universal (just ∏, including it for completeness)
|
||||
def all (A : ★) (P : A -> ★) : ★ := forall (a : A), P a;
|
||||
def all (A : ★) (P : A → ★) : ★ := forall (a : A), P a;
|
||||
|
||||
-- introduction rule
|
||||
def all_intro (A : ★) (P : A -> ★) (h : forall (a : A), P a) : all A P := h;
|
||||
def all_intro (A : ★) (P : A → ★) (h : forall (a : A), P a) : all A P := h;
|
||||
|
||||
-- elimination rule
|
||||
def all_elim (A : ★) (P : A -> ★) (h_all : all A P) (a : A) : P a := h_all a;
|
||||
def all_elim (A : ★) (P : A → ★) (h_all : all A P) (a : A) : P a := h_all a;
|
||||
|
||||
-- --------------------------------------------------------------------------------------------------------------
|
||||
|
||||
-- Equality
|
||||
|
||||
-- 2nd order Leibniz equality
|
||||
def eq (A : ★) (x y : A) := forall (P : A -> ★), P x -> P y;
|
||||
def eq (A : ★) (x y : A) := forall (P : A → ★), P x → P y;
|
||||
|
||||
-- equality is reflexive
|
||||
def eq_refl (A : ★) (x : A) : eq A x x := fun (P : A -> ★) (Hx : P x) => Hx;
|
||||
def eq_refl (A : ★) (x : A) : eq A x x := fun (P : A → ★) (Hx : P x) => Hx;
|
||||
|
||||
-- equality is symmetric
|
||||
def eq_sym (A : ★) (x y : A) (Hxy : eq A x y) : eq A y x := fun (P : A -> ★) (Hy : P y) =>
|
||||
Hxy (fun (z : A) => P z -> P x) (fun (Hx : P x) => Hx) Hy;
|
||||
def eq_sym (A : ★) (x y : A) (Hxy : eq A x y) : eq A y x := fun (P : A → ★) (Hy : P y) =>
|
||||
Hxy (fun (z : A) => P z → P x) (fun (Hx : P x) => Hx) Hy;
|
||||
|
||||
-- equality is transitive
|
||||
def eq_trans (A : ★) (x y z : A) (Hxy : eq A x y) (Hyz : eq A y z) : eq A x z := fun (P : A -> ★) (Hx : P x) =>
|
||||
def eq_trans (A : ★) (x y z : A) (Hxy : eq A x y) (Hyz : eq A y z) : eq A x z := fun (P : A → ★) (Hx : P x) =>
|
||||
Hyz P (Hxy P Hx);
|
||||
|
||||
-- equality is a universal congruence
|
||||
def eq_cong (A B : ★) (x y : A) (f : A -> B) (H : eq A x y) : eq B (f x) (f y) :=
|
||||
fun (P : B -> ★) (Hfx : P (f x)) =>
|
||||
def eq_cong (A B : ★) (x y : A) (f : A → B) (H : eq A x y) : eq B (f x) (f y) :=
|
||||
fun (P : B → ★) (Hfx : P (f x)) =>
|
||||
H (fun (a : A) => P (f a)) Hfx;
|
||||
|
||||
-- --------------------------------------------------------------------------------------------------------------
|
||||
|
||||
-- unique existence
|
||||
def exists_uniq (A : ★) (P : A -> ★) : ★ :=
|
||||
exists A (fun (x : A) => P x ∧ (forall (y : A), P y -> eq A x y));
|
||||
def exists_uniq (A : ★) (P : A → ★) : ★ :=
|
||||
exists A (fun (x : A) => P x ∧ (forall (y : A), P y → eq A x y));
|
||||
|
||||
def exists_uniq_elim (A B : ★) (P : A -> ★) (ex_a : exists_uniq A P) (h : forall (a : A), P a -> (forall (y : A), P y -> eq A a y) -> B) : B :=
|
||||
exists_elim A B (fun (x : A) => P x ∧ (forall (y : A), P y -> eq A x y)) ex_a
|
||||
(fun (a : A) (h2 : P a ∧ (forall (y : A), P y -> eq A a y)) =>
|
||||
h a (and_elim_l (P a) (forall (y : A), P y -> eq A a y) h2)
|
||||
(and_elim_r (P a) (forall (y : A), P y -> eq A a y) h2));
|
||||
def exists_uniq_elim (A B : ★) (P : A → ★) (ex_a : exists_uniq A P) (h : forall (a : A), P a → (forall (y : A), P y → eq A a y) → B) : B :=
|
||||
exists_elim A B (fun (x : A) => P x ∧ (forall (y : A), P y → eq A x y)) ex_a
|
||||
(fun (a : A) (h2 : P a ∧ (forall (y : A), P y → eq A a y)) =>
|
||||
h a (and_elim_l (P a) (forall (y : A), P y → eq A a y) h2)
|
||||
(and_elim_r (P a) (forall (y : A), P y → eq A a y) h2));
|
||||
|
||||
def exists_uniq_t (A : ★) : ★ :=
|
||||
exists A (fun (x : A) => forall (y : A), eq A x y);
|
||||
|
||||
def exists_uniq_t_elim (A B : ★) (ex_a : exists_uniq_t A) (h : forall (a : A), (forall (y : A), eq A a y) -> B) : B :=
|
||||
def exists_uniq_t_elim (A B : ★) (ex_a : exists_uniq_t A) (h : forall (a : A), (forall (y : A), eq A a y) → B) : B :=
|
||||
exists_elim A B (fun (x : A) => forall (y : A), eq A x y) ex_a (fun (a : A) (h2 : forall (y : A), eq A a y) => h a h2);
|
||||
|
||||
-- --------------------------------------------------------------------------------------------------------------
|
||||
|
|
@ -154,16 +152,14 @@ section Theorems
|
|||
-- ~A ∧ ~B => ~(A ∨ B)
|
||||
def de_morgan2 (h : not A ∧ not B) : not (A ∨ B) :=
|
||||
fun (contra : A ∨ B) =>
|
||||
or_elim A B false contra
|
||||
(and_elim_l (not A) (not B) h)
|
||||
(and_elim_r (not A) (not B) h);
|
||||
or_elim A B false contra (π₁ h) (π₂ h);
|
||||
|
||||
-- ~A ∨ ~B => ~(A ∧ B)
|
||||
def de_morgan3 (h : not A ∨ not B) : not (A ∧ B) :=
|
||||
fun (contra : A ∧ B) =>
|
||||
or_elim (not A) (not B) false h
|
||||
(fun (na : not A) => na (and_elim_l A B contra))
|
||||
(fun (nb : not B) => nb (and_elim_r A B contra));
|
||||
(fun (na : not A) => na (π₁ contra))
|
||||
(fun (nb : not B) => nb (π₂ contra));
|
||||
|
||||
-- the last one (~(A ∧ B) => ~A ∨ ~B) is not possible constructively
|
||||
|
||||
|
|
@ -220,7 +216,7 @@ section Theorems
|
|||
or_elim A B A hor ([a : A] a) ([b : B] nb b A);
|
||||
|
||||
-- (A => B) => ~B => ~A
|
||||
def contrapositive (f : A -> B) (nb : not B) : not A :=
|
||||
def contrapositive (f : A → B) (nb : not B) : not A :=
|
||||
fun (a : A) => nb (f a);
|
||||
|
||||
end Theorems
|
||||
|
|
|
|||
17
lib/Check.hs
17
lib/Check.hs
|
|
@ -16,6 +16,12 @@ matchPi x mt =
|
|||
(Pi _ a b) -> pure (a, b)
|
||||
t -> throwError $ ExpectedPiType x t
|
||||
|
||||
matchProd :: Expr -> Expr -> ReaderT Env Result (Expr, Expr)
|
||||
matchProd x mt =
|
||||
whnf mt >>= \case
|
||||
(Prod a b) -> pure (a, b)
|
||||
t -> throwError $ ExpectedProdType x t
|
||||
|
||||
findLevel :: Context -> Expr -> ReaderT Env Result Integer
|
||||
findLevel g a = do
|
||||
s <- findType g a
|
||||
|
|
@ -72,6 +78,17 @@ findType g e@(Let _ (Just t) v b) = do
|
|||
_ <- findType g t
|
||||
betaEquiv' e t res
|
||||
pure t
|
||||
findType g (Prod a b) = do
|
||||
aSort <- findType g a
|
||||
bSort <- findType g b
|
||||
liftEither $ compSort a b aSort bSort
|
||||
findType g (Pair a b) = do
|
||||
aType <- findType g a
|
||||
bType <- findType g b
|
||||
validateType g $ Prod aType bType
|
||||
pure $ Prod aType bType
|
||||
findType g (Pi1 x) = fst <$> (findType g x >>= matchProd x)
|
||||
findType g (Pi2 x) = snd <$> (findType g x >>= matchProd x)
|
||||
|
||||
checkType :: Env -> Expr -> Result Expr
|
||||
checkType env t = runReaderT (findType [] t) env
|
||||
|
|
|
|||
|
|
@ -116,6 +116,10 @@ usedVars (I.Let name ascr value body) = saveState $ do
|
|||
ascr' <- traverse usedVars ascr
|
||||
removeName name
|
||||
S.union (ty' `S.union` (ascr' ?: S.empty)) <$> usedVars body
|
||||
usedVars (I.Prod m n) = S.union <$> usedVars m <*> usedVars n
|
||||
usedVars (I.Pair m n) = S.union <$> usedVars m <*> usedVars n
|
||||
usedVars (I.Pi1 x) = usedVars x
|
||||
usedVars (I.Pi2 x) = usedVars x
|
||||
|
||||
-- traverse the body of a definition, adding the necessary section arguments to
|
||||
-- any definitions made within the section
|
||||
|
|
@ -142,6 +146,10 @@ traverseBody (I.Let name ascr value body) = saveState $ do
|
|||
value' <- traverseBody value
|
||||
removeName name
|
||||
I.Let name ascr' value' <$> traverseBody body
|
||||
traverseBody (I.Prod m n) = I.Prod <$> traverseBody m <*> traverseBody n
|
||||
traverseBody (I.Pair m n) = I.Pair <$> traverseBody m <*> traverseBody n
|
||||
traverseBody (I.Pi1 x) = I.Pi1 <$> traverseBody x
|
||||
traverseBody (I.Pi2 x) = I.Pi2 <$> traverseBody x
|
||||
|
||||
mkPi :: (Text, IRExpr) -> IRExpr -> IRExpr
|
||||
mkPi (param, typ) = I.Pi param typ
|
||||
|
|
@ -206,3 +214,7 @@ elaborate ir = evalState (elaborate' ir) []
|
|||
ty' <- elaborate' ty
|
||||
modify (name :)
|
||||
E.Let name (Just ty') val' <$> elaborate' body
|
||||
elaborate' (I.Prod m n) = E.Prod <$> elaborate' m <*> elaborate' n
|
||||
elaborate' (I.Pair m n) = E.Pair <$> elaborate' m <*> elaborate' n
|
||||
elaborate' (I.Pi1 x) = E.Pi1 <$> elaborate' x
|
||||
elaborate' (I.Pi2 x) = E.Pi2 <$> elaborate' x
|
||||
|
|
|
|||
|
|
@ -9,6 +9,7 @@ data Error
|
|||
= UnboundVariable Text
|
||||
| NotASort Expr
|
||||
| ExpectedPiType Expr Expr
|
||||
| ExpectedProdType Expr Expr
|
||||
| NotEquivalent Expr Expr Expr
|
||||
| PNMissingType Text
|
||||
| DuplicateDefinition Text
|
||||
|
|
@ -18,6 +19,7 @@ instance Pretty Error where
|
|||
pretty (UnboundVariable x) = "Unbound variable: '" <> pretty x <> "'"
|
||||
pretty (NotASort x) = group $ hang 4 ("Term:" <> line <> pretty x) <> line <> "is not a type"
|
||||
pretty (ExpectedPiType x t) = group $ hang 4 ("Term:" <> line <> pretty x) <> line <> hang 4 ("is not a function, instead is type" <> line <> pretty t)
|
||||
pretty (ExpectedProdType x t) = group $ hang 4 ("Term:" <> line <> pretty x) <> line <> hang 4 ("is not a pair, instead is type" <> line <> pretty t)
|
||||
pretty (NotEquivalent a a' e) =
|
||||
group $
|
||||
hang 4 ("Cannot unify" <> line <> pretty a)
|
||||
|
|
|
|||
26
lib/Eval.hs
26
lib/Eval.hs
|
|
@ -45,6 +45,10 @@ subst k s (App m n) = App (subst k s m) (subst k s n)
|
|||
subst k s (Abs x m n) = Abs x (subst k s m) (subst (k + 1) (incIndices s) n)
|
||||
subst k s (Pi x m n) = Pi x (subst k s m) (subst (k + 1) (incIndices s) n)
|
||||
subst k s (Let x t v b) = Let x t (subst k s v) (subst (k + 1) (incIndices s) b)
|
||||
subst k s (Prod m n) = Prod (subst k s m) (subst k s n)
|
||||
subst k s (Pair m n) = Pair (subst k s m) (subst k s n)
|
||||
subst k s (Pi1 x) = Pi1 (subst k s x)
|
||||
subst k s (Pi2 x) = Pi2 (subst k s x)
|
||||
|
||||
envLookupVal :: Text -> ReaderT Env Result Expr
|
||||
envLookupVal n = asks ((_val <$>) . M.lookup n) >>= maybe (throwError $ UnboundVariable n) pure
|
||||
|
|
@ -59,6 +63,12 @@ reduce (Abs x t v) = Abs x <$> reduce t <*> reduce v
|
|||
reduce (Pi x t v) = Pi x <$> reduce t <*> reduce v
|
||||
reduce (Free n) = envLookupVal n
|
||||
reduce (Let _ _ v b) = pure $ subst 0 v b
|
||||
reduce (Prod a b) = Prod <$> reduce a <*> reduce b
|
||||
reduce (Pair a b) = Pair <$> reduce a <*> reduce b
|
||||
reduce (Pi1 (Pair a _)) = pure a
|
||||
reduce (Pi2 (Pair _ b)) = pure b
|
||||
reduce (Pi1 x) = Pi1 <$> reduce x
|
||||
reduce (Pi2 x) = Pi2 <$> reduce x
|
||||
reduce e = pure e
|
||||
|
||||
normalize :: Expr -> ReaderT Env Result Expr
|
||||
|
|
@ -78,6 +88,18 @@ whnf (App m n) = do
|
|||
else whnf $ App m' n
|
||||
whnf (Free n) = envLookupVal n >>= whnf
|
||||
whnf (Let _ _ v b) = whnf $ subst 0 v b
|
||||
whnf (Pi1 (Pair a _)) = pure a
|
||||
whnf (Pi2 (Pair _ b)) = pure b
|
||||
whnf (Pi1 x) = do
|
||||
x' <- whnf x
|
||||
if x == x'
|
||||
then pure $ Pi1 x
|
||||
else whnf $ Pi1 x'
|
||||
whnf (Pi2 x) = do
|
||||
x' <- whnf x
|
||||
if x == x'
|
||||
then pure $ Pi2 x
|
||||
else whnf $ Pi2 x'
|
||||
whnf e = pure e
|
||||
|
||||
betaEquiv :: Expr -> Expr -> ReaderT Env Result Bool
|
||||
|
|
@ -99,6 +121,10 @@ betaEquiv e1 e2
|
|||
(Pi _ t1 v1, Pi _ t2 v2) -> (&&) <$> betaEquiv t1 t2 <*> betaEquiv v1 v2
|
||||
(Let _ _ v b, e) -> betaEquiv (subst 0 v b) e
|
||||
(e, Let _ _ v b) -> betaEquiv (subst 0 v b) e
|
||||
(Prod a b, Prod a' b') -> (&&) <$> betaEquiv a a' <*> betaEquiv b b'
|
||||
(Pair a b, Pair a' b') -> (&&) <$> betaEquiv a a' <*> betaEquiv b b'
|
||||
(Pi1 x, Pi1 x') -> betaEquiv x x'
|
||||
(Pi2 x, Pi2 x') -> betaEquiv x x'
|
||||
_ -> pure False -- remaining cases impossible, false, or redundant
|
||||
|
||||
betaEquiv' :: Expr -> Expr -> Expr -> ReaderT Env Result ()
|
||||
|
|
|
|||
20
lib/Expr.hs
20
lib/Expr.hs
|
|
@ -15,6 +15,10 @@ data Expr where
|
|||
Abs :: Text -> Expr -> Expr -> Expr
|
||||
Pi :: Text -> Expr -> Expr -> Expr
|
||||
Let :: Text -> Maybe Expr -> Expr -> Expr -> Expr
|
||||
Prod :: Expr -> Expr -> Expr
|
||||
Pair :: Expr -> Expr -> Expr
|
||||
Pi1 :: Expr -> Expr
|
||||
Pi2 :: Expr -> Expr
|
||||
deriving (Show, Ord)
|
||||
|
||||
instance Pretty Expr where
|
||||
|
|
@ -30,6 +34,10 @@ instance Eq Expr where
|
|||
(Abs _ t1 b1) == (Abs _ t2 b2) = t1 == t2 && b1 == b2
|
||||
(Pi _ t1 b1) == (Pi _ t2 b2) = t1 == t2 && b1 == b2
|
||||
(Let _ _ v1 b1) == (Let _ _ v2 b2) = v1 == v2 && b1 == b2
|
||||
(Prod x1 y1) == (Prod x2 y2) = x1 == x2 && y1 == y2
|
||||
(Pair x1 y1) == (Pair x2 y2) = x1 == x2 && y1 == y2
|
||||
(Pi1 x) == (Pi1 y) = x == y
|
||||
(Pi2 x) == (Pi2 y) = x == y
|
||||
_ == _ = False
|
||||
|
||||
occursFree :: Integer -> Expr -> Bool
|
||||
|
|
@ -42,6 +50,10 @@ occursFree n (App a b) = on (||) (occursFree n) a b
|
|||
occursFree n (Abs _ a b) = occursFree n a || occursFree (n + 1) b
|
||||
occursFree n (Pi _ a b) = occursFree n a || occursFree (n + 1) b
|
||||
occursFree n (Let _ _ v b) = occursFree n v || occursFree (n + 1) b
|
||||
occursFree n (Prod x y) = occursFree n x || occursFree n y
|
||||
occursFree n (Pair x y) = occursFree n x || occursFree n y
|
||||
occursFree n (Pi1 x) = occursFree n x
|
||||
occursFree n (Pi2 x) = occursFree n x
|
||||
|
||||
shiftIndices :: Integer -> Integer -> Expr -> Expr
|
||||
shiftIndices d c (Var x k)
|
||||
|
|
@ -55,6 +67,10 @@ shiftIndices d c (App m n) = App (shiftIndices d c m) (shiftIndices d c n)
|
|||
shiftIndices d c (Abs x m n) = Abs x (shiftIndices d c m) (shiftIndices d (c + 1) n)
|
||||
shiftIndices d c (Pi x m n) = Pi x (shiftIndices d c m) (shiftIndices d (c + 1) n)
|
||||
shiftIndices d c (Let x t v b) = Let x t (shiftIndices d c v) (shiftIndices d (c + 1) b)
|
||||
shiftIndices d c (Prod m n) = Prod (shiftIndices d c m) (shiftIndices d c n)
|
||||
shiftIndices d c (Pair m n) = Pair (shiftIndices d c m) (shiftIndices d c n)
|
||||
shiftIndices d c (Pi1 x) = Pi1 (shiftIndices d c x)
|
||||
shiftIndices d c (Pi2 x) = Pi2 (shiftIndices d c x)
|
||||
|
||||
incIndices :: Expr -> Expr
|
||||
incIndices = shiftIndices 1 0
|
||||
|
|
@ -206,6 +222,10 @@ prettyExpr k expr = case expr of
|
|||
where
|
||||
(binds, body) = collectLets expr
|
||||
bindings = sep $ map pretty binds
|
||||
(Prod x y) -> parens $ parens (pretty x) <+> "×" <+> parens (pretty y)
|
||||
(Pair x y) -> parens $ pretty x <> "," <+> pretty y
|
||||
(Pi1 x) -> parens $ "π₁" <+> parens (pretty x)
|
||||
(Pi2 x) -> parens $ "π₂" <+> parens (pretty x)
|
||||
|
||||
prettyT :: Expr -> Text
|
||||
prettyT = renderStrict . layoutSmart defaultLayoutOptions . pretty
|
||||
|
|
|
|||
10
lib/IR.hs
10
lib/IR.hs
|
|
@ -27,6 +27,16 @@ data IRExpr
|
|||
, letValue :: IRExpr
|
||||
, letBody :: IRExpr
|
||||
}
|
||||
| Prod
|
||||
{ prodLeft :: IRExpr
|
||||
, prodRight :: IRExpr
|
||||
}
|
||||
| Pair
|
||||
{ pairLeft :: IRExpr
|
||||
, pairRight :: IRExpr
|
||||
}
|
||||
| Pi1 IRExpr
|
||||
| Pi2 IRExpr
|
||||
deriving (Show, Eq, Ord)
|
||||
|
||||
data IRSectionDef
|
||||
|
|
|
|||
|
|
@ -17,25 +17,12 @@ import qualified Text.Megaparsec.Char.Lexer as L
|
|||
newtype TypeError = TE Error
|
||||
deriving (Eq, Ord)
|
||||
|
||||
data InfixDef = InfixDef
|
||||
{ infixFixity :: Fixity
|
||||
, infixOp :: Text -> IRExpr -> IRExpr -> IRExpr
|
||||
}
|
||||
|
||||
data Fixity
|
||||
= InfixL Int
|
||||
| InfixR Int
|
||||
deriving (Eq, Show)
|
||||
|
||||
type Operators = Map Text InfixDef
|
||||
|
||||
initialOps :: Operators
|
||||
initialOps =
|
||||
M.fromAscList
|
||||
[ ("→", InfixDef (InfixR 2) (const $ Pi ""))
|
||||
, ("->", InfixDef (InfixR 2) (const $ Pi ""))
|
||||
, ("×", InfixDef (InfixL 10) (const Prod))
|
||||
]
|
||||
type Operators = Map Text Fixity
|
||||
|
||||
type Parser = ParsecT TypeError Text (State Operators)
|
||||
|
||||
|
|
@ -59,7 +46,7 @@ symbol :: Text -> Parser ()
|
|||
symbol = void . L.symbol skipSpace
|
||||
|
||||
symbols :: String
|
||||
symbols = "→!@#$%^&*-+=<>,./?[]{}\\|`~'\"∧∨⊙×≅"
|
||||
symbols = "!@#$%^&*-+=<>,./?[]{}\\|`~'\"∧∨⊙×≅"
|
||||
|
||||
pKeyword :: Text -> Parser ()
|
||||
pKeyword keyword = void $ lexeme (string keyword <* notFollowedBy alphaNumChar)
|
||||
|
|
@ -219,7 +206,7 @@ pInfix = parseWithPrec 0
|
|||
op <- lookAhead pSymbol
|
||||
operators <- get
|
||||
case M.lookup op operators of
|
||||
Just (InfixDef fixity opFun) -> do
|
||||
Just fixity -> do
|
||||
let (opPrec, nextPrec) = case fixity of
|
||||
InfixL p -> (p, p)
|
||||
InfixR p -> (p, p + 1)
|
||||
|
|
@ -228,19 +215,16 @@ pInfix = parseWithPrec 0
|
|||
else do
|
||||
_ <- pSymbol
|
||||
rhs <- parseWithPrec nextPrec
|
||||
continue prec $ opFun op lhs rhs
|
||||
continue prec (App (App (Var op) lhs) rhs)
|
||||
Nothing -> fail $ "unknown operator '" ++ toString op ++ "'"
|
||||
|
||||
pIRExpr :: Parser IRExpr
|
||||
pIRExpr = lexeme $ choice [pLAbs, pALAbs, pPAbs, pLet, pInfix]
|
||||
pAppTerm :: Parser IRExpr
|
||||
pAppTerm = lexeme $ choice [pLAbs, pALAbs, pPAbs, pLet, pInfix]
|
||||
|
||||
-- pAppTerm :: Parser IRExpr
|
||||
-- pAppTerm = lexeme $ choice [pLAbs, pALAbs, pPAbs, pLet, pInfix]
|
||||
--
|
||||
-- pIRExpr :: Parser IRExpr
|
||||
-- pIRExpr = lexeme $ do
|
||||
-- e <- pAppTerm
|
||||
-- option e $ (symbol "->" <|> symbol "→") >> Pi "" e <$> pIRExpr
|
||||
pIRExpr :: Parser IRExpr
|
||||
pIRExpr = lexeme $ do
|
||||
e <- pAppTerm
|
||||
option e $ (symbol "->" <|> symbol "→") >> Pi "" e <$> pIRExpr
|
||||
|
||||
pAscription :: Parser IRExpr
|
||||
pAscription = lexeme $ try $ symbol ":" >> label "type" pIRExpr
|
||||
|
|
@ -248,7 +232,7 @@ pAscription = lexeme $ try $ symbol ":" >> label "type" pIRExpr
|
|||
pAxiom :: Parser IRDef
|
||||
pAxiom = lexeme $ label "axiom" $ do
|
||||
pKeyword "axiom"
|
||||
ident <- pIdentifier <|> pSymbol
|
||||
ident <- pIdentifier
|
||||
params <- pManyParams
|
||||
ascription <- fmap (flip (foldr mkPi) params) pAscription
|
||||
symbol ";"
|
||||
|
|
@ -281,7 +265,7 @@ pFixityDec = do
|
|||
, InfixR <$> (lexeme (char 'r') >> lexeme L.decimal)
|
||||
]
|
||||
ident <- pSymbol
|
||||
modify $ M.insert ident $ InfixDef fixity $ (App .) . App . Var
|
||||
modify (M.insert ident fixity)
|
||||
symbol ";"
|
||||
|
||||
pSection :: Parser IRSectionDef
|
||||
|
|
@ -300,7 +284,7 @@ pIRProgram :: Parser IRProgram
|
|||
pIRProgram = skipSpace >> concat <$> some pIRDef
|
||||
|
||||
parserWrapper :: Parser a -> String -> Text -> Either String a
|
||||
parserWrapper p filename input = first errorBundlePretty $ evalState (runParserT p filename input) initialOps
|
||||
parserWrapper p filename input = first errorBundlePretty $ evalState (runParserT p filename input) M.empty
|
||||
|
||||
parseProgram :: String -> Text -> Either String IRProgram
|
||||
parseProgram = parserWrapper pIRProgram
|
||||
|
|
|
|||
Loading…
Reference in a new issue