Revert "starting progress on (non-dependent) products"
This reverts commit 2c1f193d77.
This commit is contained in:
parent
1544a33644
commit
6b965fda1d
8 changed files with 30 additions and 108 deletions
|
|
@ -35,17 +35,19 @@ def double_neg_intro (A : ★) (a : A) : not (not A) :=
|
||||||
|
|
||||||
-- Conjunction
|
-- Conjunction
|
||||||
|
|
||||||
def ∧ (A B : ★) : ★ := A × B;
|
def ∧ (A B : ★) : ★ := {A × B};
|
||||||
infixl 10 ∧;
|
infixl 10 ∧;
|
||||||
|
|
||||||
-- introduction rule
|
-- introduction rule
|
||||||
def and_intro (A B : ★) (a : A) (b : B) : A ∧ B := (a, b);
|
def and_intro (A B : ★) (a : A) (b : B) : A ∧ B := <a, b>;
|
||||||
|
|
||||||
-- left elimination rule
|
-- left elimination rule
|
||||||
def and_elim_l (A B : ★) (ab : A ∧ B) : A := π₁ ab;
|
def and_elim_l (A B : ★) (ab : A ∧ B) : A :=
|
||||||
|
ab A (fun (a : A) (b : B) => a);
|
||||||
|
|
||||||
-- right elimination rule
|
-- right elimination rule
|
||||||
def and_elim_r (A B : ★) (ab : A ∧ B) : B := π₂ ab;
|
def and_elim_r (A B : ★) (ab : A ∧ B) : B :=
|
||||||
|
ab B (fun (a : A) (b : B) => b);
|
||||||
|
|
||||||
-- --------------------------------------------------------------------------------------------------------------
|
-- --------------------------------------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
|
@ -146,25 +148,27 @@ section Theorems
|
||||||
|
|
||||||
-- ~(A ∨ B) => ~A ∧ ~B
|
-- ~(A ∨ B) => ~A ∧ ~B
|
||||||
def de_morgan1 (h : not (A ∨ B)) : not A ∧ not B :=
|
def de_morgan1 (h : not (A ∨ B)) : not A ∧ not B :=
|
||||||
( [a : A] h (or_intro_l A B a)
|
<[a : A] h (or_intro_l A B a)
|
||||||
, [b : B] h (or_intro_r A B b));
|
,[b : B] h (or_intro_r A B b)>;
|
||||||
|
|
||||||
-- ~A ∧ ~B => ~(A ∨ B)
|
-- ~A ∧ ~B => ~(A ∨ B)
|
||||||
def de_morgan2 (h : not A ∧ not B) : not (A ∨ B) :=
|
def de_morgan2 (h : not A ∧ not B) : not (A ∨ B) :=
|
||||||
fun (contra : A ∨ B) =>
|
fun (contra : A ∨ B) =>
|
||||||
or_elim A B false contra (π₁ h) (π₂ h);
|
or_elim A B false contra
|
||||||
|
(and_elim_l (not A) (not B) h)
|
||||||
|
(and_elim_r (not A) (not B) h);
|
||||||
|
|
||||||
-- ~A ∨ ~B => ~(A ∧ B)
|
-- ~A ∨ ~B => ~(A ∧ B)
|
||||||
def de_morgan3 (h : not A ∨ not B) : not (A ∧ B) :=
|
def de_morgan3 (h : not A ∨ not B) : not (A ∧ B) :=
|
||||||
fun (contra : A ∧ B) =>
|
fun (contra : A ∧ B) =>
|
||||||
or_elim (not A) (not B) false h
|
or_elim (not A) (not B) false h
|
||||||
(fun (na : not A) => na (π₁ contra))
|
(fun (na : not A) => na (and_elim_l A B contra))
|
||||||
(fun (nb : not B) => nb (π₂ contra));
|
(fun (nb : not B) => nb (and_elim_r A B contra));
|
||||||
|
|
||||||
-- the last one (~(A ∧ B) => ~A ∨ ~B) is not possible constructively
|
-- the last one (~(A ∧ B) => ~A ∨ ~B) is not possible constructively
|
||||||
|
|
||||||
-- A ∧ B => B ∧ A
|
-- A ∧ B => B ∧ A
|
||||||
def and_comm (h : A ∧ B) : B ∧ A := (π₂ h, π₁ h);
|
def and_comm (h : A ∧ B) : B ∧ A := <π₂ h, π₁ h>;
|
||||||
|
|
||||||
-- A ∨ B => B ∨ A
|
-- A ∨ B => B ∨ A
|
||||||
def or_comm (h : A ∨ B) : B ∨ A :=
|
def or_comm (h : A ∨ B) : B ∨ A :=
|
||||||
|
|
@ -174,11 +178,11 @@ section Theorems
|
||||||
|
|
||||||
-- A ∧ (B ∧ C) => (A ∧ B) ∧ C
|
-- A ∧ (B ∧ C) => (A ∧ B) ∧ C
|
||||||
def and_assoc_l (h : A ∧ (B ∧ C)) : (A ∧ B) ∧ C :=
|
def and_assoc_l (h : A ∧ (B ∧ C)) : (A ∧ B) ∧ C :=
|
||||||
((π₁ h, π₁ (π₂ h)), π₂ (π₂ h));
|
<<π₁ h, π₁ (π₂ h)>, π₂ (π₂ h)>;
|
||||||
|
|
||||||
-- (A ∧ B) ∧ C => A ∧ (B ∧ C)
|
-- (A ∧ B) ∧ C => A ∧ (B ∧ C)
|
||||||
def and_assoc_r (h : (A ∧ B) ∧ C) : A ∧ (B ∧ C) :=
|
def and_assoc_r (h : (A ∧ B) ∧ C) : A ∧ (B ∧ C) :=
|
||||||
(π₁ (π₁ h), (π₂ (π₁ h), π₂ h));
|
<π₁ (π₁ h), <π₂ (π₁ h), π₂ h>>;
|
||||||
|
|
||||||
-- A ∨ (B ∨ C) => (A ∨ B) ∨ C
|
-- A ∨ (B ∨ C) => (A ∨ B) ∨ C
|
||||||
def or_assoc_l (h : A ∨ (B ∨ C)) : (A ∨ B) ∨ C :=
|
def or_assoc_l (h : A ∨ (B ∨ C)) : (A ∨ B) ∨ C :=
|
||||||
|
|
@ -201,14 +205,14 @@ section Theorems
|
||||||
-- A ∧ (B ∨ C) => A ∧ B ∨ A ∧ C
|
-- A ∧ (B ∨ C) => A ∧ B ∨ A ∧ C
|
||||||
def and_distrib_l_or (h : A ∧ (B ∨ C)) : A ∧ B ∨ A ∧ C :=
|
def and_distrib_l_or (h : A ∧ (B ∨ C)) : A ∧ B ∨ A ∧ C :=
|
||||||
or_elim B C (A ∧ B ∨ A ∧ C) (π₂ h)
|
or_elim B C (A ∧ B ∨ A ∧ C) (π₂ h)
|
||||||
(fun (b : B) => or_intro_l (A ∧ B) (A ∧ C) (π₁ h, b))
|
(fun (b : B) => or_intro_l (A ∧ B) (A ∧ C) <π₁ h, b>)
|
||||||
(fun (c : C) => or_intro_r (A ∧ B) (A ∧ C) (π₁ h, c));
|
(fun (c : C) => or_intro_r (A ∧ B) (A ∧ C) <π₁ h, c>);
|
||||||
|
|
||||||
-- A ∧ B ∨ A ∧ C => A ∧ (B ∨ C)
|
-- A ∧ B ∨ A ∧ C => A ∧ (B ∨ C)
|
||||||
def and_factor_l_or (h : A ∧ B ∨ A ∧ C) : A ∧ (B ∨ C) :=
|
def and_factor_l_or (h : A ∧ B ∨ A ∧ C) : A ∧ (B ∨ C) :=
|
||||||
or_elim (A ∧ B) (A ∧ C) (A ∧ (B ∨ C)) h
|
or_elim (A ∧ B) (A ∧ C) (A ∧ (B ∨ C)) h
|
||||||
(fun (ab : A ∧ B) => (π₁ ab, or_intro_l B C (π₂ ab)))
|
(fun (ab : A ∧ B) => <π₁ ab, or_intro_l B C (π₂ ab)>)
|
||||||
(fun (ac : A ∧ C) => (π₁ ac, or_intro_r B C (π₂ ac)));
|
(fun (ac : A ∧ C) => <π₁ ac, or_intro_r B C (π₂ ac)>);
|
||||||
|
|
||||||
-- Thanks Quinn!
|
-- Thanks Quinn!
|
||||||
-- A ∨ B => ~B => A
|
-- A ∨ B => ~B => A
|
||||||
|
|
|
||||||
17
lib/Check.hs
17
lib/Check.hs
|
|
@ -16,12 +16,6 @@ matchPi x mt =
|
||||||
(Pi _ a b) -> pure (a, b)
|
(Pi _ a b) -> pure (a, b)
|
||||||
t -> throwError $ ExpectedPiType x t
|
t -> throwError $ ExpectedPiType x t
|
||||||
|
|
||||||
matchProd :: Expr -> Expr -> ReaderT Env Result (Expr, Expr)
|
|
||||||
matchProd x mt =
|
|
||||||
whnf mt >>= \case
|
|
||||||
(Prod a b) -> pure (a, b)
|
|
||||||
t -> throwError $ ExpectedProdType x t
|
|
||||||
|
|
||||||
findLevel :: Context -> Expr -> ReaderT Env Result Integer
|
findLevel :: Context -> Expr -> ReaderT Env Result Integer
|
||||||
findLevel g a = do
|
findLevel g a = do
|
||||||
s <- findType g a
|
s <- findType g a
|
||||||
|
|
@ -78,17 +72,6 @@ findType g e@(Let _ (Just t) v b) = do
|
||||||
_ <- findType g t
|
_ <- findType g t
|
||||||
betaEquiv' e t res
|
betaEquiv' e t res
|
||||||
pure t
|
pure t
|
||||||
findType g (Prod a b) = do
|
|
||||||
aSort <- findType g a
|
|
||||||
bSort <- findType g b
|
|
||||||
liftEither $ compSort a b aSort bSort
|
|
||||||
findType g (Pair a b) = do
|
|
||||||
aType <- findType g a
|
|
||||||
bType <- findType g b
|
|
||||||
validateType g $ Prod aType bType
|
|
||||||
pure $ Prod aType bType
|
|
||||||
findType g (Pi1 x) = fst <$> (findType g x >>= matchProd x)
|
|
||||||
findType g (Pi2 x) = snd <$> (findType g x >>= matchProd x)
|
|
||||||
|
|
||||||
checkType :: Env -> Expr -> Result Expr
|
checkType :: Env -> Expr -> Result Expr
|
||||||
checkType env t = runReaderT (findType [] t) env
|
checkType env t = runReaderT (findType [] t) env
|
||||||
|
|
|
||||||
|
|
@ -116,10 +116,6 @@ usedVars (I.Let name ascr value body) = saveState $ do
|
||||||
ascr' <- traverse usedVars ascr
|
ascr' <- traverse usedVars ascr
|
||||||
removeName name
|
removeName name
|
||||||
S.union (ty' `S.union` (ascr' ?: S.empty)) <$> usedVars body
|
S.union (ty' `S.union` (ascr' ?: S.empty)) <$> usedVars body
|
||||||
usedVars (I.Prod m n) = S.union <$> usedVars m <*> usedVars n
|
|
||||||
usedVars (I.Pair m n) = S.union <$> usedVars m <*> usedVars n
|
|
||||||
usedVars (I.Pi1 x) = usedVars x
|
|
||||||
usedVars (I.Pi2 x) = usedVars x
|
|
||||||
|
|
||||||
-- traverse the body of a definition, adding the necessary section arguments to
|
-- traverse the body of a definition, adding the necessary section arguments to
|
||||||
-- any definitions made within the section
|
-- any definitions made within the section
|
||||||
|
|
@ -146,10 +142,6 @@ traverseBody (I.Let name ascr value body) = saveState $ do
|
||||||
value' <- traverseBody value
|
value' <- traverseBody value
|
||||||
removeName name
|
removeName name
|
||||||
I.Let name ascr' value' <$> traverseBody body
|
I.Let name ascr' value' <$> traverseBody body
|
||||||
traverseBody (I.Prod m n) = I.Prod <$> traverseBody m <*> traverseBody n
|
|
||||||
traverseBody (I.Pair m n) = I.Pair <$> traverseBody m <*> traverseBody n
|
|
||||||
traverseBody (I.Pi1 x) = I.Pi1 <$> traverseBody x
|
|
||||||
traverseBody (I.Pi2 x) = I.Pi2 <$> traverseBody x
|
|
||||||
|
|
||||||
mkPi :: (Text, IRExpr) -> IRExpr -> IRExpr
|
mkPi :: (Text, IRExpr) -> IRExpr -> IRExpr
|
||||||
mkPi (param, typ) = I.Pi param typ
|
mkPi (param, typ) = I.Pi param typ
|
||||||
|
|
@ -214,7 +206,3 @@ elaborate ir = evalState (elaborate' ir) []
|
||||||
ty' <- elaborate' ty
|
ty' <- elaborate' ty
|
||||||
modify (name :)
|
modify (name :)
|
||||||
E.Let name (Just ty') val' <$> elaborate' body
|
E.Let name (Just ty') val' <$> elaborate' body
|
||||||
elaborate' (I.Prod m n) = E.Prod <$> elaborate' m <*> elaborate' n
|
|
||||||
elaborate' (I.Pair m n) = E.Pair <$> elaborate' m <*> elaborate' n
|
|
||||||
elaborate' (I.Pi1 x) = E.Pi1 <$> elaborate' x
|
|
||||||
elaborate' (I.Pi2 x) = E.Pi2 <$> elaborate' x
|
|
||||||
|
|
|
||||||
|
|
@ -9,7 +9,6 @@ data Error
|
||||||
= UnboundVariable Text
|
= UnboundVariable Text
|
||||||
| NotASort Expr
|
| NotASort Expr
|
||||||
| ExpectedPiType Expr Expr
|
| ExpectedPiType Expr Expr
|
||||||
| ExpectedProdType Expr Expr
|
|
||||||
| NotEquivalent Expr Expr Expr
|
| NotEquivalent Expr Expr Expr
|
||||||
| PNMissingType Text
|
| PNMissingType Text
|
||||||
| DuplicateDefinition Text
|
| DuplicateDefinition Text
|
||||||
|
|
@ -19,7 +18,6 @@ instance Pretty Error where
|
||||||
pretty (UnboundVariable x) = "Unbound variable: '" <> pretty x <> "'"
|
pretty (UnboundVariable x) = "Unbound variable: '" <> pretty x <> "'"
|
||||||
pretty (NotASort x) = group $ hang 4 ("Term:" <> line <> pretty x) <> line <> "is not a type"
|
pretty (NotASort x) = group $ hang 4 ("Term:" <> line <> pretty x) <> line <> "is not a type"
|
||||||
pretty (ExpectedPiType x t) = group $ hang 4 ("Term:" <> line <> pretty x) <> line <> hang 4 ("is not a function, instead is type" <> line <> pretty t)
|
pretty (ExpectedPiType x t) = group $ hang 4 ("Term:" <> line <> pretty x) <> line <> hang 4 ("is not a function, instead is type" <> line <> pretty t)
|
||||||
pretty (ExpectedProdType x t) = group $ hang 4 ("Term:" <> line <> pretty x) <> line <> hang 4 ("is not a pair, instead is type" <> line <> pretty t)
|
|
||||||
pretty (NotEquivalent a a' e) =
|
pretty (NotEquivalent a a' e) =
|
||||||
group $
|
group $
|
||||||
hang 4 ("Cannot unify" <> line <> pretty a)
|
hang 4 ("Cannot unify" <> line <> pretty a)
|
||||||
|
|
|
||||||
26
lib/Eval.hs
26
lib/Eval.hs
|
|
@ -45,10 +45,6 @@ subst k s (App m n) = App (subst k s m) (subst k s n)
|
||||||
subst k s (Abs x m n) = Abs x (subst k s m) (subst (k + 1) (incIndices s) n)
|
subst k s (Abs x m n) = Abs x (subst k s m) (subst (k + 1) (incIndices s) n)
|
||||||
subst k s (Pi x m n) = Pi x (subst k s m) (subst (k + 1) (incIndices s) n)
|
subst k s (Pi x m n) = Pi x (subst k s m) (subst (k + 1) (incIndices s) n)
|
||||||
subst k s (Let x t v b) = Let x t (subst k s v) (subst (k + 1) (incIndices s) b)
|
subst k s (Let x t v b) = Let x t (subst k s v) (subst (k + 1) (incIndices s) b)
|
||||||
subst k s (Prod m n) = Prod (subst k s m) (subst k s n)
|
|
||||||
subst k s (Pair m n) = Pair (subst k s m) (subst k s n)
|
|
||||||
subst k s (Pi1 x) = Pi1 (subst k s x)
|
|
||||||
subst k s (Pi2 x) = Pi2 (subst k s x)
|
|
||||||
|
|
||||||
envLookupVal :: Text -> ReaderT Env Result Expr
|
envLookupVal :: Text -> ReaderT Env Result Expr
|
||||||
envLookupVal n = asks ((_val <$>) . M.lookup n) >>= maybe (throwError $ UnboundVariable n) pure
|
envLookupVal n = asks ((_val <$>) . M.lookup n) >>= maybe (throwError $ UnboundVariable n) pure
|
||||||
|
|
@ -63,12 +59,6 @@ reduce (Abs x t v) = Abs x <$> reduce t <*> reduce v
|
||||||
reduce (Pi x t v) = Pi x <$> reduce t <*> reduce v
|
reduce (Pi x t v) = Pi x <$> reduce t <*> reduce v
|
||||||
reduce (Free n) = envLookupVal n
|
reduce (Free n) = envLookupVal n
|
||||||
reduce (Let _ _ v b) = pure $ subst 0 v b
|
reduce (Let _ _ v b) = pure $ subst 0 v b
|
||||||
reduce (Prod a b) = Prod <$> reduce a <*> reduce b
|
|
||||||
reduce (Pair a b) = Pair <$> reduce a <*> reduce b
|
|
||||||
reduce (Pi1 (Pair a _)) = pure a
|
|
||||||
reduce (Pi2 (Pair _ b)) = pure b
|
|
||||||
reduce (Pi1 x) = Pi1 <$> reduce x
|
|
||||||
reduce (Pi2 x) = Pi2 <$> reduce x
|
|
||||||
reduce e = pure e
|
reduce e = pure e
|
||||||
|
|
||||||
normalize :: Expr -> ReaderT Env Result Expr
|
normalize :: Expr -> ReaderT Env Result Expr
|
||||||
|
|
@ -88,18 +78,6 @@ whnf (App m n) = do
|
||||||
else whnf $ App m' n
|
else whnf $ App m' n
|
||||||
whnf (Free n) = envLookupVal n >>= whnf
|
whnf (Free n) = envLookupVal n >>= whnf
|
||||||
whnf (Let _ _ v b) = whnf $ subst 0 v b
|
whnf (Let _ _ v b) = whnf $ subst 0 v b
|
||||||
whnf (Pi1 (Pair a _)) = pure a
|
|
||||||
whnf (Pi2 (Pair _ b)) = pure b
|
|
||||||
whnf (Pi1 x) = do
|
|
||||||
x' <- whnf x
|
|
||||||
if x == x'
|
|
||||||
then pure $ Pi1 x
|
|
||||||
else whnf $ Pi1 x'
|
|
||||||
whnf (Pi2 x) = do
|
|
||||||
x' <- whnf x
|
|
||||||
if x == x'
|
|
||||||
then pure $ Pi2 x
|
|
||||||
else whnf $ Pi2 x'
|
|
||||||
whnf e = pure e
|
whnf e = pure e
|
||||||
|
|
||||||
betaEquiv :: Expr -> Expr -> ReaderT Env Result Bool
|
betaEquiv :: Expr -> Expr -> ReaderT Env Result Bool
|
||||||
|
|
@ -121,10 +99,6 @@ betaEquiv e1 e2
|
||||||
(Pi _ t1 v1, Pi _ t2 v2) -> (&&) <$> betaEquiv t1 t2 <*> betaEquiv v1 v2
|
(Pi _ t1 v1, Pi _ t2 v2) -> (&&) <$> betaEquiv t1 t2 <*> betaEquiv v1 v2
|
||||||
(Let _ _ v b, e) -> betaEquiv (subst 0 v b) e
|
(Let _ _ v b, e) -> betaEquiv (subst 0 v b) e
|
||||||
(e, Let _ _ v b) -> betaEquiv (subst 0 v b) e
|
(e, Let _ _ v b) -> betaEquiv (subst 0 v b) e
|
||||||
(Prod a b, Prod a' b') -> (&&) <$> betaEquiv a a' <*> betaEquiv b b'
|
|
||||||
(Pair a b, Pair a' b') -> (&&) <$> betaEquiv a a' <*> betaEquiv b b'
|
|
||||||
(Pi1 x, Pi1 x') -> betaEquiv x x'
|
|
||||||
(Pi2 x, Pi2 x') -> betaEquiv x x'
|
|
||||||
_ -> pure False -- remaining cases impossible, false, or redundant
|
_ -> pure False -- remaining cases impossible, false, or redundant
|
||||||
|
|
||||||
betaEquiv' :: Expr -> Expr -> Expr -> ReaderT Env Result ()
|
betaEquiv' :: Expr -> Expr -> Expr -> ReaderT Env Result ()
|
||||||
|
|
|
||||||
20
lib/Expr.hs
20
lib/Expr.hs
|
|
@ -15,10 +15,6 @@ data Expr where
|
||||||
Abs :: Text -> Expr -> Expr -> Expr
|
Abs :: Text -> Expr -> Expr -> Expr
|
||||||
Pi :: Text -> Expr -> Expr -> Expr
|
Pi :: Text -> Expr -> Expr -> Expr
|
||||||
Let :: Text -> Maybe Expr -> Expr -> Expr -> Expr
|
Let :: Text -> Maybe Expr -> Expr -> Expr -> Expr
|
||||||
Prod :: Expr -> Expr -> Expr
|
|
||||||
Pair :: Expr -> Expr -> Expr
|
|
||||||
Pi1 :: Expr -> Expr
|
|
||||||
Pi2 :: Expr -> Expr
|
|
||||||
deriving (Show, Ord)
|
deriving (Show, Ord)
|
||||||
|
|
||||||
instance Pretty Expr where
|
instance Pretty Expr where
|
||||||
|
|
@ -34,10 +30,6 @@ instance Eq Expr where
|
||||||
(Abs _ t1 b1) == (Abs _ t2 b2) = t1 == t2 && b1 == b2
|
(Abs _ t1 b1) == (Abs _ t2 b2) = t1 == t2 && b1 == b2
|
||||||
(Pi _ t1 b1) == (Pi _ t2 b2) = t1 == t2 && b1 == b2
|
(Pi _ t1 b1) == (Pi _ t2 b2) = t1 == t2 && b1 == b2
|
||||||
(Let _ _ v1 b1) == (Let _ _ v2 b2) = v1 == v2 && b1 == b2
|
(Let _ _ v1 b1) == (Let _ _ v2 b2) = v1 == v2 && b1 == b2
|
||||||
(Prod x1 y1) == (Prod x2 y2) = x1 == x2 && y1 == y2
|
|
||||||
(Pair x1 y1) == (Pair x2 y2) = x1 == x2 && y1 == y2
|
|
||||||
(Pi1 x) == (Pi1 y) = x == y
|
|
||||||
(Pi2 x) == (Pi2 y) = x == y
|
|
||||||
_ == _ = False
|
_ == _ = False
|
||||||
|
|
||||||
occursFree :: Integer -> Expr -> Bool
|
occursFree :: Integer -> Expr -> Bool
|
||||||
|
|
@ -50,10 +42,6 @@ occursFree n (App a b) = on (||) (occursFree n) a b
|
||||||
occursFree n (Abs _ a b) = occursFree n a || occursFree (n + 1) b
|
occursFree n (Abs _ a b) = occursFree n a || occursFree (n + 1) b
|
||||||
occursFree n (Pi _ a b) = occursFree n a || occursFree (n + 1) b
|
occursFree n (Pi _ a b) = occursFree n a || occursFree (n + 1) b
|
||||||
occursFree n (Let _ _ v b) = occursFree n v || occursFree (n + 1) b
|
occursFree n (Let _ _ v b) = occursFree n v || occursFree (n + 1) b
|
||||||
occursFree n (Prod x y) = occursFree n x || occursFree n y
|
|
||||||
occursFree n (Pair x y) = occursFree n x || occursFree n y
|
|
||||||
occursFree n (Pi1 x) = occursFree n x
|
|
||||||
occursFree n (Pi2 x) = occursFree n x
|
|
||||||
|
|
||||||
shiftIndices :: Integer -> Integer -> Expr -> Expr
|
shiftIndices :: Integer -> Integer -> Expr -> Expr
|
||||||
shiftIndices d c (Var x k)
|
shiftIndices d c (Var x k)
|
||||||
|
|
@ -67,10 +55,6 @@ shiftIndices d c (App m n) = App (shiftIndices d c m) (shiftIndices d c n)
|
||||||
shiftIndices d c (Abs x m n) = Abs x (shiftIndices d c m) (shiftIndices d (c + 1) n)
|
shiftIndices d c (Abs x m n) = Abs x (shiftIndices d c m) (shiftIndices d (c + 1) n)
|
||||||
shiftIndices d c (Pi x m n) = Pi x (shiftIndices d c m) (shiftIndices d (c + 1) n)
|
shiftIndices d c (Pi x m n) = Pi x (shiftIndices d c m) (shiftIndices d (c + 1) n)
|
||||||
shiftIndices d c (Let x t v b) = Let x t (shiftIndices d c v) (shiftIndices d (c + 1) b)
|
shiftIndices d c (Let x t v b) = Let x t (shiftIndices d c v) (shiftIndices d (c + 1) b)
|
||||||
shiftIndices d c (Prod m n) = Prod (shiftIndices d c m) (shiftIndices d c n)
|
|
||||||
shiftIndices d c (Pair m n) = Pair (shiftIndices d c m) (shiftIndices d c n)
|
|
||||||
shiftIndices d c (Pi1 x) = Pi1 (shiftIndices d c x)
|
|
||||||
shiftIndices d c (Pi2 x) = Pi2 (shiftIndices d c x)
|
|
||||||
|
|
||||||
incIndices :: Expr -> Expr
|
incIndices :: Expr -> Expr
|
||||||
incIndices = shiftIndices 1 0
|
incIndices = shiftIndices 1 0
|
||||||
|
|
@ -222,10 +206,6 @@ prettyExpr k expr = case expr of
|
||||||
where
|
where
|
||||||
(binds, body) = collectLets expr
|
(binds, body) = collectLets expr
|
||||||
bindings = sep $ map pretty binds
|
bindings = sep $ map pretty binds
|
||||||
(Prod x y) -> parens $ parens (pretty x) <+> "×" <+> parens (pretty y)
|
|
||||||
(Pair x y) -> parens $ pretty x <> "," <+> pretty y
|
|
||||||
(Pi1 x) -> parens $ "π₁" <+> parens (pretty x)
|
|
||||||
(Pi2 x) -> parens $ "π₂" <+> parens (pretty x)
|
|
||||||
|
|
||||||
prettyT :: Expr -> Text
|
prettyT :: Expr -> Text
|
||||||
prettyT = renderStrict . layoutSmart defaultLayoutOptions . pretty
|
prettyT = renderStrict . layoutSmart defaultLayoutOptions . pretty
|
||||||
|
|
|
||||||
10
lib/IR.hs
10
lib/IR.hs
|
|
@ -27,16 +27,6 @@ data IRExpr
|
||||||
, letValue :: IRExpr
|
, letValue :: IRExpr
|
||||||
, letBody :: IRExpr
|
, letBody :: IRExpr
|
||||||
}
|
}
|
||||||
| Prod
|
|
||||||
{ prodLeft :: IRExpr
|
|
||||||
, prodRight :: IRExpr
|
|
||||||
}
|
|
||||||
| Pair
|
|
||||||
{ pairLeft :: IRExpr
|
|
||||||
, pairRight :: IRExpr
|
|
||||||
}
|
|
||||||
| Pi1 IRExpr
|
|
||||||
| Pi2 IRExpr
|
|
||||||
deriving (Show, Eq, Ord)
|
deriving (Show, Eq, Ord)
|
||||||
|
|
||||||
data IRSectionDef
|
data IRSectionDef
|
||||||
|
|
|
||||||
|
|
@ -187,11 +187,16 @@ pSort = lexeme $ pStar <|> pSquare
|
||||||
pOpSection :: Parser IRExpr
|
pOpSection :: Parser IRExpr
|
||||||
pOpSection = lexeme $ parens $ Var <$> pSymbol
|
pOpSection = lexeme $ parens $ Var <$> pSymbol
|
||||||
|
|
||||||
pPair :: Parser IRExpr
|
pProd :: Parser IRExpr
|
||||||
pPair = lexeme $ between (char '(') (char ')') $ do
|
pProd = lexeme $ between (char '{') (char '}') $ do
|
||||||
skipSpace
|
|
||||||
left <- pIRExpr
|
left <- pIRExpr
|
||||||
_ <- lexeme $ symbol ","
|
_ <- symbol "×"
|
||||||
|
Prod left <$> pIRExpr
|
||||||
|
|
||||||
|
pPair :: Parser IRExpr
|
||||||
|
pPair = lexeme $ between (char '<') (char '>') $ do
|
||||||
|
left <- pIRExpr
|
||||||
|
_ <- symbol ","
|
||||||
Pair left <$> pIRExpr
|
Pair left <$> pIRExpr
|
||||||
|
|
||||||
pPi1 :: Parser IRExpr
|
pPi1 :: Parser IRExpr
|
||||||
|
|
@ -201,7 +206,7 @@ pPi2 :: Parser IRExpr
|
||||||
pPi2 = lexeme $ symbol "π₂" >> Pi2 <$> pIRExpr
|
pPi2 = lexeme $ symbol "π₂" >> Pi2 <$> pIRExpr
|
||||||
|
|
||||||
pTerm :: Parser IRExpr
|
pTerm :: Parser IRExpr
|
||||||
pTerm = lexeme $ label "term" $ choice [pSort, pPi1, pPi2, pPureVar, pVar, try pPair, try pOpSection, parens pIRExpr]
|
pTerm = lexeme $ label "term" $ choice [pSort, pPi1, pPi2, pPureVar, pVar, pProd, pPair, try pOpSection, parens pIRExpr]
|
||||||
|
|
||||||
pInfix :: Parser IRExpr
|
pInfix :: Parser IRExpr
|
||||||
pInfix = parseWithPrec 0
|
pInfix = parseWithPrec 0
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue