right inverse unique
This commit is contained in:
parent
310c144b76
commit
832af2271f
1 changed files with 30 additions and 0 deletions
|
|
@ -161,4 +161,34 @@ section Group
|
|||
-- e * a^-1 = a^-1
|
||||
(id_lg (i a)))));
|
||||
|
||||
-- And so are right inverses
|
||||
def right_inv_unique (a b : G) (h : right_inverse a b) : eq G b (i a) :=
|
||||
-- b = e * b
|
||||
-- = (a^-1 * a) * b
|
||||
-- = a^-1 * (a * b)
|
||||
-- = a^-1 * e
|
||||
-- = a^-1
|
||||
eq_trans G b (op e b) (i a)
|
||||
-- b = e * b
|
||||
(eq_sym G (op e b) b (id_lg b))
|
||||
-- e * b = a^-1
|
||||
(eq_trans G (op e b) (op (op (i a) a) b) (i a)
|
||||
-- e * b = (a^-1 * a) * b
|
||||
(eq_cong G G e (op (i a) a) (fun (x : G) => op x b)
|
||||
-- e = (a^-1 * a)
|
||||
(eq_sym G (op (i a) a) e (inv_lg a)))
|
||||
|
||||
-- (a^-1 * a) * b = a^-1
|
||||
(eq_trans G (op (op (i a) a) b) (op (i a) (op a b)) (i a)
|
||||
-- (a^-1 * a) * b = a^-1 * (a * b)
|
||||
(eq_sym G (op (i a) (op a b)) (op (op (i a) a) b) (assoc_g (i a) a b))
|
||||
|
||||
-- a^-1 * (a * b) = a^-1
|
||||
(eq_trans G (op (i a) (op a b)) (op (i a) e) (i a)
|
||||
-- a^-1 * (a * b) = a^-1 * e
|
||||
(eq_cong G G (op a b) e (op (i a)) h)
|
||||
|
||||
-- a^-1 * e = a^-1
|
||||
(id_rg (i a)))));
|
||||
|
||||
end Group
|
||||
|
|
|
|||
Loading…
Reference in a new issue