some algebra

This commit is contained in:
William Ball 2025-01-05 11:15:41 -08:00
parent 08ef684418
commit dc2a715531

View file

@ -2,69 +2,87 @@
section Magma
variable (G : ★);
def binop := G → G → G;
variable (G H : ★);
def binop (A : ★) := A → A → A;
def = := eq G;
infixl 1 =;
variable (* : binop);
def ~ := eq H;
infixl 1 ~;
variable (* : binop G);
infixl 20 *;
variable (+ : binop H);
infixl 20 +;
variable (f : G → H);
hypothesis (f_homo : forall (a b : G), f (a * b) ~ f a * f b);
def *> (a b : G) := b * a;
infixl 20 *>;
section Semigroup
def assoc := forall (a b c : G), a * (b * c) = a * b * c;
hypothesis (Hassoc : assoc);
hypothesis (assocG : forall (a b c : G), a * (b * c) = a * b * c);
hypothesis (assocH : forall (a b c : H), a + (b + c) ~ a + b + c);
def assoc_op (a b c : G) : a *> (b *> c) = a *> b *> c :=
eq_sym G (a *> b *> c) (a *> (b *> c)) (Hassoc c b a);
eq_sym G (a *> b *> c) (a *> (b *> c)) (assocG c b a);
section Monoid
variable (e : G);
def id_l := forall (a : G), e * a = a;
def id_r := forall (a : G), a * e = a;
variable (eH : H);
hypothesis (Hid_l : id_l);
hypothesis (Hid_r : id_r);
hypothesis (id_lG : forall (a : G), e * a = a);
hypothesis (id_rG : forall (a : G), a * e = a);
def id_l_op : forall (a : G), e *> a = a := Hid_r;
def id_r_op : forall (a : G), a *> e = a := Hid_l;
hypothesis (id_lH : forall (a : H), e * a = a);
hypothesis (id_rH : forall (a : H), a * e = a);
def left_id_unique (a : G) : #id_l G (*) a → a = e :=
fun (H : #id_l G (*) a) =>
eq_trans G a (a * e) e
(eq_sym G (a * e) a (Hid_r a))
(H e);
def id_l_op : forall (a : G), e *> a = a := id_rG;
def id_r_op : forall (a : G), a *> e = a := id_lG;
def right_id_unique (a : G) : #id_r G (*) a → a = e := #left_id_unique G (*>) e Hid_l a;
def left_id_unique (a : G) (H : forall (b : G), a * b = b) : a = e :=
eq_trans G a (a * e) e (eq_sym G (a * e) a (id_rG a)) (H e);
def right_id_unique (a : G) (H : forall (b : G), b * a = b) : a = e := #left_id_unique G (*>) e id_lG a H;
section Group
variable (i : G → G);
hypothesis (Hinv_l : forall (a : G), i a * a = e);
hypothesis (Hinv_r : forall (a : G), a * i a = e);
hypothesis (inv_lG : forall (a : G), i a * a = e);
hypothesis (inv_rG : forall (a : G), a * i a = e);
variable (j : H → H);
hypothesis (inv_lH : forall (a : H), j a * a ~ eH);
hypothesis (inv_rH : forall (a : H), a * j a ~ eH);
def left_inv_unique (a b : G) (h : b * a = e) : b = i a :=
eq_trans G b (b * e) (i a)
(eq_sym G (b * e) b (Hid_r b))
(eq_sym G (b * e) b (id_rG b))
(eq_trans G (b * e) (b * (a * i a)) (i a)
(eq_cong G G e (a * i a) ((*) b)
(eq_sym G (a * i a) e (Hinv_r a)))
(eq_sym G (a * i a) e (inv_rG a)))
(eq_trans G (b * (a * i a)) (b * a * i a) (i a)
(Hassoc b a (i a))
(assocG b a (i a))
(eq_trans G (b * a * i a) (e * i a) (i a)
(eq_cong G G (b * a) e ([z : G] z * i a) h)
(Hid_l (i a)))));
(id_lG (i a)))));
def right_inv_unique (a b : G) (h : a * b = e) : b = i a :=
#left_inv_unique G (*>) assoc_op e Hid_r Hid_l i Hinv_l a b h;
#left_inv_unique G (*>) assoc_op e id_rG id_lG i inv_lG a b h;
def homo_preserve_inv (a : G) : f (i a) ~ j (f a) :=
#left_inv_unique H (+) assocH eH id_lH id_rH j inv_rH (f a) (f (i a))
(eq_trans H (f a * f (i a)) (f (a * i a))
)
-- WTS: f a * f (i a) ~ eH
def inverse_involutive (a : G) : i (i a) = a :=
eq_sym G a (i (i a)) (right_inv_unique (i a) a (Hinv_l a));
eq_sym G a (i (i a)) (right_inv_unique (i a) a (inv_lG a));
def shoes_and_socks (a b : G) : i (a * b) = i b * i a :=
eq_sym G (i b * i a) (i (a * b))
@ -73,34 +91,34 @@ def shoes_and_socks (a b : G) : i (a * b) = i b * i a :=
(under_ai (x y : G) (h : x = y) := eq_cong G G x y ([z : G] z * (i a)) h)
in
eq_trans G (a * b * (i b * i a)) (a * b * i b * i a) e
(Hassoc (a * b) (i b) (i a))
(assocG (a * b) (i b) (i a))
(eq_trans G (a * b * i b * i a) (a * (b * i b) * i a) e
(under_ai (a * b * i b) (a * (b * i b)) (eq_sym G (a * (b * i b)) (a * b * i b) (Hassoc a b (i b))))
(under_ai (a * b * i b) (a * (b * i b)) (eq_sym G (a * (b * i b)) (a * b * i b) (assocG a b (i b))))
(eq_trans G (a * (b * i b) * i a) (a * e * i a) e
(eq_cong G G (b * i b) e (fun (x : G) => (a * x * i a)) (Hinv_r b))
(eq_cong G G (b * i b) e (fun (x : G) => (a * x * i a)) (inv_rG b))
(eq_trans G (a * e * i a) (a * i a) e
(under_ai (a * e) a (Hid_r a))
(Hinv_r a))))
(under_ai (a * e) a (id_rG a))
(inv_rG a))))
end));
def cancel_l (a b c : G) (h : a * b = a * c) : b = c :=
eq_trans G b (e * b) c
(eq_sym G (e * b) b (Hid_l b))
(eq_sym G (e * b) b (id_lG b))
(eq_trans G (e * b) (i a * a * b) c
(eq_cong G G e (i a * a) ([x : G] x * b)
(eq_sym G (i a * a) e (Hinv_l a)))
(eq_sym G (i a * a) e (inv_lG a)))
(eq_trans G (i a * a * b) (i a * (a * b)) c
(eq_sym G (i a * (a * b)) (i a * a * b) (Hassoc (i a) a b))
(eq_sym G (i a * (a * b)) (i a * a * b) (assocG (i a) a b))
(eq_trans G (i a * (a * b)) (i a * (a * c)) c
(eq_cong G G (a * b) (a * c) ((*) (i a)) h)
(eq_trans G (i a * (a * c)) (i a * a * c) c
(Hassoc (i a) a c)
(assocG (i a) a c)
(eq_trans G (i a * a * c) (e * c) c
(eq_cong G G (i a * a) e ([x : G] x * c) (Hinv_l a))
(Hid_l c))))));
(eq_cong G G (i a * a) e ([x : G] x * c) (inv_lG a))
(id_lG c))))));
def cancel_r (a b c : G) (h : b * a = c * a) : b = c :=
#cancel_l G (*>) assoc_op e Hid_r i Hinv_r a b c h;
#cancel_l G (*>) assoc_op e id_rG i inv_rG a b c h;
def abelian : ★ := forall (a b : G), a * b = b * a;
@ -108,16 +126,16 @@ def left_right_cancel : (forall (x y z : G), x * y = z * x → y = z) → abelia
fun (h : forall (x y z : G), x * y = z * x → y = z) (a b : G) =>
h (i a) (a * b) (b * a)
(eq_trans G (i a * (a * b)) (i a * a * b) (b * a * i a)
(Hassoc (i a) a b)
(assocG (i a) a b)
(eq_trans G (i a * a * b) (e * b) (b * a * i a)
(eq_cong G G (i a * a) e ([x : G] x * b) (Hinv_l a))
(eq_cong G G (i a * a) e ([x : G] x * b) (inv_lG a))
(eq_trans G (e * b) b (b * a * i a)
(Hid_l b)
(id_lG b)
(eq_trans G b (b * e) (b * a * i a)
(eq_sym G (b * e) b (Hid_r b))
(eq_sym G (b * e) b (id_rG b))
(eq_trans G (b * e) (b * (a * i a)) (b * a * i a)
(eq_cong G G e (a * i a) ((*) b) (eq_sym G (a * i a) e (Hinv_r a)))
(Hassoc b a (i a)))))));
(eq_cong G G e (a * i a) ((*) b) (eq_sym G (a * i a) e (inv_rG a)))
(assocG b a (i a)))))));
def inv_distrib_abelian : (forall (a b : G), i (a * b) = i a * i b) → abelian :=
fun (h : forall (a b : G), i (a * b) = i a * i b) (a b : G) =>