treesitter doesn't like block comments

This commit is contained in:
William Ball 2024-11-20 22:21:43 -08:00
parent e05c8e8a92
commit ffc78ca1ff

View file

@ -1,7 +1,7 @@
[*
* We need some basic logic, so I'm stealing this from <logic.pg>. See that file
* for more details on how these work.
*]
--
-- We need some basic logic, so I'm stealing this from <logic.pg>. See that file
-- for more details on how these work.
--
false : * := forall (A : *), A;
false_elim (A : *) (contra : false) : A := contra A;
@ -39,13 +39,13 @@ comp (A B C : *) (g : B -> C) (f : A -> B) (x : A) : C :=
-- --------------------------------------------------------------------------------------------------------------
[*
* Next we can define equality. This is the same as in <logic.pg>. We get a
* couple Peano axioms for free as theorems.
*]
--
-- Next we can define equality. This is the same as in <logic.pg>. We get a
-- couple Peano axioms for free as theorems.
--
-- implies axiom 5
-- (if `x : nat`, then `y : nat`, since we can only compare objects of the same type)
-- (if x : nat, then y : nat, since we can only compare objects of the same type)
eq (A : *) (x y : A) := forall (P : A -> *), P x -> P y;
-- axiom 2 (but as a theorem)
@ -59,7 +59,7 @@ eq_sym (A : *) (x y : A) (Hxy : eq A x y) : eq A y x := fun (P : A -> *) (Hy : P
eq_trans (A : *) (x y z : A) (Hxy : eq A x y) (Hyz : eq A y z) : eq A x z := fun (P : A -> *) (Hx : P x) =>
Hyz P (Hxy P Hx);
-- This isn't an axiom, but is handy. If `x = y`, then `f x = f y`.
-- This isn't an axiom, but is handy. If x = y, then f x = f y.
eq_cong (A B : *) (x y : A) (f : A -> B) (H : eq A x y) : eq B (f x) (f y) :=
fun (P : B -> *) (Hfx : P (f x)) =>
H (fun (a : A) => P (f a)) Hfx;
@ -69,51 +69,51 @@ assoc (A : *) (op : binop A) := forall (c a b : A),
-- --------------------------------------------------------------------------------------------------------------
[*
* Now we can define the Peano axioms. Unlike with equality, perga is not
* powerful enough to construct the natural numbers (or at least to prove the
* Peano axioms as theorems from a definition constructible in perga). However,
* working with axioms is extremely common in math. As such, perga has a system
* for doing just that, namely the *axiom* system.
*
* In a definition, rather than give a value for the term, we can give it the
* value `axiom`, in which case a type ascription is mandatory. Perga will then
* trust our type ascription, and assume going forward that the identifier we
* defined is a value of the asserted type. For example, we will use the axiom
* system to assert the existence of a type of natural numbers
*]
--
-- Now we can define the Peano axioms. Unlike with equality, perga is not
-- powerful enough to construct the natural numbers (or at least to prove the
-- Peano axioms as theorems from a definition constructible in perga). However,
-- working with axioms is extremely common in math. As such, perga has a system
-- for doing just that, namely the *axiom* system.
--
-- In a definition, rather than give a value for the term, we can give it the
-- value axiom, in which case a type ascription is mandatory. Perga will then
-- trust our type ascription, and assume going forward that the identifier we
-- defined is a value of the asserted type. For example, we will use the axiom
-- system to assert the existence of a type of natural numbers
--
nat : * := axiom;
[*
* As you can imagine, this can be risky. For instance, there's nothing stopping
* us from saying
* uh_oh : false := axiom;
* or stipulating more subtly contradictory axioms. As such, as in mathematics,
* axioms should be used with care.
*
* There's another problem with axioms, namely that perga cannot do any
* computations with axioms. The more you can define within perga natively, the
* better, as computations done without axioms can be utilized by perga. For
* example, in <computation.pg>, we define the natural numbers as Church
* numerals entirely within perga. There, the proof that `1 + 1 = 2` is just
* `eq_refl`, since they reduce to the same thing. Here, `1 + 1 = 2` will
* require a proof, since perga is unable to do computations with things defined
* as axioms.
*
* With these warnings in place, the Peano axioms are proven to be consistent,
* so we should be fine. I'm formalizing the second order axioms given in the
* wikipedia article on the Peano axioms
* (https://en.wikipedia.org/wiki/Peano_axioms).
*]
--
-- As you can imagine, this can be risky. For instance, there's nothing stopping
-- us from saying
-- uh_oh : false := axiom;
-- or stipulating more subtly contradictory axioms. As such, as in mathematics,
-- axioms should be used with care.
--
-- There's another problem with axioms, namely that perga cannot do any
-- computations with axioms. The more you can define within perga natively, the
-- better, as computations done without axioms can be utilized by perga. For
-- example, in <computation.pg>, we define the natural numbers as Church
-- numerals entirely within perga. There, the proof that 1 + 1 = 2 is just
-- eq_refl, since they reduce to the same thing. Here, 1 + 1 = 2 will
-- require a proof, since perga is unable to do computations with things defined
-- as axioms.
--
-- With these warnings in place, the Peano axioms are proven to be consistent,
-- so we should be fine. I'm formalizing the second order axioms given in the
-- wikipedia article on the Peano axioms
-- (https://en.wikipedia.org/wiki/Peano_axioms).
--
-- axiom 1: 0 is a natural number
zero : nat := axiom;
-- axiom 6: For every `n`, `S n` is a natural number.
-- axiom 6: For every n, S n is a natural number.
suc (n : nat) : nat := axiom;
-- axiom 7: If `S n = S m`, then `n = m`.
-- axiom 7: If S n = S m, then n = m.
suc_inj : forall (n m : nat), eq nat (suc n) (suc m) -> eq nat n m := axiom;
-- axiom 8: No successor of any natural number is zero.
@ -126,16 +126,16 @@ nat_ind : forall (φ : nat -> *), φ zero -> (forall (n : nat), φ n -> φ (suc
-- --------------------------------------------------------------------------------------------------------------
[*
* Now that we have stipulated these axioms, we are free to use them to make
* definitions, prove theorems, etc.
*
* Our first theorem, as a warm up, is to prove that every natural number is
* either 0 or the successor of another natural number.
*
* First, we will make a bunch of abbreviations, since these terms get really
* long and complicated really quickly.
*]
--
-- Now that we have stipulated these axioms, we are free to use them to make
-- definitions, prove theorems, etc.
--
-- Our first theorem, as a warm up, is to prove that every natural number is
-- either 0 or the successor of another natural number.
--
-- First, we will make a bunch of abbreviations, since these terms get really
-- long and complicated really quickly.
--
-- Some abbreviations for common numbers.
one : nat := suc zero;
@ -144,17 +144,17 @@ three : nat := suc two;
four : nat := suc three;
five : nat := suc four;
-- First, the predecessor of `n` is `m` if `n = suc m`.
-- First, the predecessor of n is m if n = suc m.
pred (n m : nat) : * := eq nat n (suc m);
-- Our claim is a disjunction, whose first option is that `n = 0`.
-- Our claim is a disjunction, whose first option is that n = 0.
szc_l (n : nat) := eq nat n zero;
-- The second option is that `n` has a predecessor.
-- The second option is that n has a predecessor.
szc_r (n : nat) := exists nat (pred n);
-- So the claim we are trying to prove is that either one of the above options
-- holds for every `n`.
-- holds for every n.
szc (n : nat) := or (szc_l n) (szc_r n);
-- And here's our proof!
@ -164,31 +164,31 @@ suc_or_zero : forall (n : nat), szc n :=
-- For the base case, the first option holds, i.e. 0 = 0
(or_intro_l (szc_l zero) (szc_r zero) (eq_refl nat zero))
-- For the inductive case, suppose the theorem holds for `n`.
-- For the inductive case, suppose the theorem holds for n.
(fun (n : nat) (_ : szc n) =>
-- Then the right option holds for `suc n`, since `suc n` is the
-- successor of `n`
-- Then the right option holds for suc n, since suc n is the
-- successor of n
or_intro_r (szc_l (suc n)) (szc_r (suc n))
(exists_intro nat (pred (suc n)) n (eq_refl nat (suc n))));
[*
* Before we continue one to defining addition, we need one more bunch of
* axioms. Addition is normally defined recursively, which is difficult without
* inductive definitions. I'm pretty sure this axiom is derivable from the
* others, but I've spent a very long time trying to derive it, and it has
* proven extremely difficult. I'm still convinced it's possible, just
* prohibitively difficult and tedious without further language features
* (implicit arguments and let bindings would help a ton).
*
* Normally, we define recursive functions `f : nat -> A` in the following format:
* f 0 = fzero
* f (suc n) = fsuc n (f n)
* More concretely, we have two equations, one for each possible case for `n`,
* i.e. either zero or a successor. In the successor case, the value of
* `f (suc n)` can depend on the value of `f n`. The recursion axioms below
* assert that for any such pair of equations, there exists a unique function
* satisfying said equations.
*]
--
-- Before we continue one to defining addition, we need one more bunch of
-- axioms. Addition is normally defined recursively, which is difficult without
-- inductive definitions. I'm pretty sure this axiom is derivable from the
-- others, but I've spent a very long time trying to derive it, and it has
-- proven extremely difficult. I'm still convinced it's possible, just
-- prohibitively difficult and tedious without further language features
-- (implicit arguments and let bindings would help a ton).
--
-- Normally, we define recursive functions f : nat -> A in the following format:
-- f 0 = fzero
-- f (suc n) = fsuc n (f n)
-- More concretely, we have two equations, one for each possible case for n,
-- i.e. either zero or a successor. In the successor case, the value of
-- f (suc n) can depend on the value of f n. The recursion axioms below
-- assert that for any such pair of equations, there exists a unique function
-- satisfying said equations.
--
-- For any such equations, there exists a function.
rec_def (A : *) (fzero : A) (fsuc : nat -> A -> A) : nat -> A := axiom;
@ -212,7 +212,7 @@ rec_def_sat_suc (A : *) (fzero : A) (fsuc : nat -> A -> A) :
rec_cond_suc A fzero fsuc (rec_def A fzero fsuc) := axiom;
-- And, finally, this function is unique in the sense that if any other function
-- also satisfies the equations, it takes the same values as `rec_def`.
-- also satisfies the equations, it takes the same values as rec_def.
rec_def_unique (A : *) (fzero : A) (fsuc : nat -> A -> A) (f g : nat -> A) :
rec_cond_zero A fzero fsuc f ->
rec_cond_suc A fzero fsuc f ->
@ -226,7 +226,7 @@ rec_def_unique (A : *) (fzero : A) (fsuc : nat -> A -> A) (f g : nat -> A) :
-- multiple times.
psuc (_ r : nat) := suc r;
-- And here's `plus`!
-- And here's plus!
plus (n : nat) : nat -> nat := rec_def nat n psuc;
-- The first equation manifests itself as the familiar
@ -251,13 +251,13 @@ one_plus_one_two : eq nat (plus one one) two :=
-- suc (1 + zero) = suc one
(eq_cong nat nat (plus one zero) one suc (plus_0_r one));
[*
* We have successfully defined addition! Note that evaluating `1 + 1` to `2`
* requires a proof, unfortunately, since this computation isn't visible to
* perga.
*
* We will now prove a couple standard properties of addition.
*]
--
-- We have successfully defined addition! Note that evaluating 1 + 1 to 2
-- requires a proof, unfortunately, since this computation isn't visible to
-- perga.
--
-- We will now prove a couple standard properties of addition.
--
-- First, associativity, namely that n + (m + p) = (n + m) + p.
plus_assoc : assoc nat plus :=
@ -303,3 +303,60 @@ plus_assoc : assoc nat plus :=
-- suc ((n + m) + p) = (n + m) + suc p
(eq_sym nat (plus (plus n m) (suc p)) (suc (plus (plus n m) p))
(plus_s_r (plus n m) p)))));
-- Up next is commutativity, but we will need a couple lemmas first.
-- First, we will show that 0 + n = n.
plus_0_l : forall (n : nat), eq nat (plus zero n) n :=
-- We prove this by induction on n.
nat_ind (fun (n : nat) => eq nat (plus zero n) n)
-- base case: WTS 0 + 0 = 0
-- This is just plus_0_r 0
(plus_0_r zero)
-- inductive case
(fun (n : nat) (IH : eq nat (plus zero n) n) =>
-- WTS 0 + (suc n) = suc n
-- 0 + (suc n) = suc (0 + n) = suc n
eq_trans nat (plus zero (suc n)) (suc (plus zero n)) (suc n)
-- 0 + (suc n) = suc (0 + n)
(plus_s_r zero n)
-- suc (0 + n) = suc n
(eq_cong nat nat (plus zero n) n suc IH));
-- Next, we will show that (suc n) + m = suc (n + m).
plus_s_l (n : nat) : forall (m : nat), eq nat (plus (suc n) m) (suc (plus n m)) :=
-- We proceed by induction on m.
nat_ind (fun (m : nat) => eq nat (plus (suc n) m) (suc (plus n m)))
-- base case: (suc n) + 0 = suc (n + 0)
-- (suc n) + 0 = suc n = suc (n + 0)
(eq_trans nat (plus (suc n) zero) (suc n) (suc (plus n zero))
-- (suc n) + 0 = suc n
(plus_0_r (suc n))
-- suc n = suc (n + 0)
(eq_cong nat nat n (plus n zero) suc
-- n = n + 0
(eq_sym nat (plus n zero) n (plus_0_r n))))
-- inductive case
-- IH = suc n + m = suc (n + m)
(fun (m : nat) (IH : eq nat (plus (suc n) m) (suc (plus n m))) =>
-- WTS suc n + suc m = suc (n + suc m)
-- suc n + suc m = suc (suc n + m)
-- = suc (suc (n + m))
-- = suc (n + suc m)
(eq_trans nat (plus (suc n) (suc m)) (suc (plus (suc n) m)) (suc (plus n (suc m)))
-- suc n + suc m = suc (suc n + m)
(plus_s_r (suc n) m)
-- suc (suc n + m) = suc (n + suc m)
(eq_trans nat (suc (plus (suc n) m)) (suc (suc (plus n m))) (suc (plus n (suc m)))
-- suc (suc n + m) = suc (suc (n + m))
(eq_cong nat nat (plus (suc n) m) (suc (plus n m)) suc IH)
-- suc (suc (n + m)) = suc (n + suc m)
(eq_cong nat nat (suc (plus n m)) (plus n (suc m)) suc
-- suc (n + m) = n + suc m
(eq_sym nat (plus n (suc m)) (suc (plus n m)) (plus_s_r n m))))));