Compare commits

..

No commits in common. "05ab942400e5365f02b3d26f865d1538a1b85049" and "94709f53208e79768f8629e980f785a7f9cd4969" have entirely different histories.

6 changed files with 145 additions and 295 deletions

View file

@ -1,83 +0,0 @@
#+title: Dependent Lambda
A basic implementation of a dependently typed lambda calculus (calculus of constructions) based on the exposition in Nederpelt and Geuvers /Type Theory and Formal Proof/. Right now it is /technically/ a perfectly capable higher order logic proof checker, though there is lots of room for improved ergonomics and usability, which I intend to work on.
* Syntax
The syntax is fairly flexible and should work as you expect. Identifiers can be Unicode as long as =megaparsec= calls them alphanumeric. Lambda and Pi abstractions can be written in many obvious ways that should be clear from the examples below. Additionally, arrows can be used as an abbreviation for a Π type where the parameter doesn't appear in the body as usual.
All of the following examples correctly parse, and should look familiar if you are used to standard lambda calculus notation or Coq syntax.
#+begin_src
λ (α : *) . λ (β : *) . λ (x : α) . λ (y : β) . x
fun (A B C : *) (g : → C) (f : A → B) (x : A) ⇒ g (f x)
fun (S : *) (P Q : S -> *) (H : Π (x : S) . P x -> Q x) (HP : forall (x : S), P x) => fun (x : S) => H x (HP x)
#+end_src
* Basic Usage
For the moment, running the program drops you into a repl where you can enter terms in the calculus of construction, which the system will then type check and report the type of the entered term, or any errors if present.
** Sample Session
Here's a sample session. Suppose your goal is to prove that for every set $S$ and pair of propositions $P$ and $Q$ on $S$, if $\forall x \in S, P x$ holds, and $\forall x \in S, P x \Rightarrow Q x$, then $\forall x \in S, Q x$. A set $S$ corresponds to a type =S=, so our term will begin
#+begin_src
> fun (S : *)
#+end_src
Likewise propositions are functions from =S → *=, so we can continue
#+begin_src
> fun (S : *) (P Q : S → *)
#+end_src
Since $\forall$ corresponds with =Π=, the hypothesis $\forall x \in S, P x$ would correspond to the type =Π (x : S) . P x= and the hypothesis $\forall x \in S, P x \Rightarrow Q x$ would correspond with =Π (x : S) . P x → Q x=. Thus we can continue
#+begin_src
> fun (S : *) (P Q : S → *) (HP : forall (x : S), P x) (H : forall (x : S), P x → Q x)
#+end_src
Since we are trying to prove a universally quantified proposition, we need to introduce an =x : S=, so
#+begin_src
> fun (S : *) (P Q : S → *) (HP : forall (x : S), P x) (H : forall (x : S), P x → Q x) (x : S)
#+end_src
Finally, all we have left to do is find something of type =Q x=. We can get to =Q x= using =H x= if we can find something of type =P x=. Fortunately, =HP x= is type =P x=, so our final term is
#+begin_src
> fun (S : *) (P Q : S → *) (HP : forall (x : S), P x) (H : forall (x : S), P x → Q x) (x : S) ⇒ H x (HP x)
#+end_src
Pressing enter to send this term to the system, it responds with
#+begin_src
λ (S : *) (P Q : S -> *) (HP : ∏ (x : S) . P x) (H : ∏ (x : S) . P x -> Q x) (x : S) . H x (HP x) : ∏ (S : *) (P Q : S -> *) . (∏ (x : S) . P x) -> (∏ (x : S) . P x -> Q x) -> ∏ (x : S) . Q x
#+end_src
This output is a bit hard to read, but it is ultimately in the form =term : type=. The =term= is, up to minor syntactic differences, the term we entered, and the =type= is the type of the term inferred by the system. As a nice sanity check, we can verify that the =type= indeed corresponds to the theorem we wanted to prove.
More complex and interesting proofs and theorems are technically possible (in fact, /all/ interesting theorems and proofs are possible, for a certain definition of /interesting/, /theorem/, and /proof/), though practically infeasible without definitions.
* Goals
** Substantive
*** TODO DEFINITIONS
Some kind of definition system would be a difficult and substantial addition, but man is it necessary to do anything. Likewise, I'd probably want a way to define primitive notions/axioms, but that should be an easy extension of the definition system. Further following /Type Theory and Formal Proof/ would additionally yield a nice context system, which would be handy, though I disagree with the choice to differentiate between parameterized definitions and functions. That distinction doesn't really make sense in full calculus of constructions.
Sidenote: With a definition system, I would greatly prefer Haskell-style type annotations to ML-style type annotations, though the latter are likely way easier to implement. It serves as a nice bit of documentation, de-clutters the function definition, and follows the familiar mathematical statement-proof structure.
*** TODO Inference
Obviously not fully decidable, but I might be able to implement some basic unification algorithm. This isn't super necessary though, I find leaving off the types of arguments to generally be a bad idea, but in some cases it can be worth it.
*** TODO Implicits
Much, much more useful than [[Inference][inference]], implicit arguments would be amazing. It also seems a lot more complicated, but any system for dealing with implicit arguments is far better than none.
*** TODO Universes?
Not really necessary without [[Inductive Definitions][inductive definitions]], but could be fun.
*** TODO Inductive Definitions
This is definitely a stretch goal. It would be cool though, and would turn this proof checker into a much more competent programming language. It's not necessary for the math, but inductive definitions let you leverage computation in proofs, which is amazing. They also make certain definitions easier, by avoiding needing to manually stipulate elimination rules, including induction principles.
** Cosmetic/usage/technical
*** TODO Prettier pretty printing
Right now, everything defaults to one line, which can be a problem with how large the proof terms get. Probably want to use [[https://hackage.haskell.org/package/prettyprinter][prettyprinter]] to be able to nicely handle indentation and line breaks.
*** TODO Better usage
Read input from a file if a filename is given, otherwise drop into a repl. Perhaps use something like [[https://hackage.haskell.org/package/haskeline][haskeline]] to improve the repl (though =rlwrap= is fine, so not a huge priority).
*** TODO Improve error messages
The error messages currently aren't terrible, but it would be nice to have, e.g. line numbers. =megaparsec= allows for semantic errors, so somehow hook into that like what I'm doing for unbound variables?
*** TODO Improve β-equivalence check
The check for β-equivalence could certainly be a lot smarter. This is much less of an issue without [[Inductive Definitions][inductive definitions]]/recursion, as far less computation gets done in general, let alone at the type level. That being said, it's certainly not a bad idea.
*** TODO Better testing
Using some kind of testing framework, like [[https://hackage.haskell.org/package/QuickCheck][QuickCheck]] and/or [[https://hackage.haskell.org/package/HUnit][HUnit]] seems like a good idea. I would like to avoid regressions as I keep working on this, and a suite of unit tests would make me feel much more comfortable.

View file

@ -1,54 +1,43 @@
{-# LANGUAGE BangPatterns #-}
module Check where
import Control.Monad.Except
import Data.List (intercalate, (!?))
import Control.Monad (unless)
import Control.Monad (guard)
import Data.List ((!?))
import Debug.Trace (trace)
import Expr
type Context = [Expr]
data TypeCheckError = SquareUntyped | UnboundVariable String | NotASort Expr Expr | ExpectedPiType Expr Expr | NotEquivalent Expr Expr Expr
instance Show TypeCheckError where
show SquareUntyped = "□ does not have a type"
show (UnboundVariable x) = "Unbound variable: " ++ x
show (NotASort x t) = "Expected " ++ pretty x ++ " to have type * or □, instead found " ++ pretty t
show (ExpectedPiType m a) = pretty m ++ " : " ++ pretty a ++ " is not a function"
show (NotEquivalent a a' e) = "Cannot unify " ++ pretty a ++ " with " ++ pretty a' ++ " when evaluating " ++ pretty e
type CheckResult = Either TypeCheckError
matchPi :: Expr -> Expr -> CheckResult (Expr, Expr)
matchPi _ (Pi _ a b) = Right (a, b)
matchPi m e = Left $ ExpectedPiType m e
showContext :: Context -> String
showContext g = "[" ++ intercalate ", " (map show g) ++ "]"
findType :: Context -> Expr -> CheckResult Expr
findType _ Star = Right Square
findType _ Square = Left SquareUntyped
findType g (Var n x) = do
t <- maybe (Left $ UnboundVariable x) Right $ g !? fromInteger n
s <- findType g t
unless (isSort s) $ throwError $ NotASort t s
-- λ S : * . λ P : ∏ x : S . * . ∏ x : S . P x
-- lambda S : * . lambda P : Pi x : S . * . lambda Q : Pi x : S . * . lambda H : (Pi x : S . Pi h : P x . Q x) . lambda G : (Pi x : S . P x) . lambda x : S . H x (G x)
-- lambda S : * . lambda P : (Pi x : S . *). lambda H : (Pi x : S . P x) . lambda x : S . H x
findType :: Context -> Expr -> Maybe Expr
findType g (Var k) = do
t <- g !? fromInteger k
kind <- findType g t
guard $ isSort kind
pure t
findType g e@(App m n) = do
(a, b) <- findType g m >>= matchPi m
findType _ Star = Just Square
findType _ Square = Nothing
findType g (App m n) = do
let !_ = trace ("app: " ++ show m ++ "\t" ++ show n) False
Pi a b <- findType g m
let !_ = trace ("Pi: " ++ show a ++ " . " ++ show b) False
a' <- findType g n
unless (betaEquiv a a') $ throwError $ NotEquivalent a a' e
pure $ subst 0 n b
findType g (Abs x a m) = do
s1 <- findType g a
unless (isSort s1) $ throwError $ NotASort a s1
b <- findType (incIndices a : map incIndices g) m
s2 <- findType g (Pi x a b)
unless (isSort s2) $ throwError $ NotASort (Pi x a b) s2
pure $ if occursFree 0 b then Pi x a b else Pi "" a b
findType g (Pi _ a b) = do
s1 <- findType g a
unless (isSort s1) $ throwError $ NotASort a s1
s2 <- findType (incIndices a : map incIndices g) b
unless (isSort s2) $ throwError $ NotASort b s2
pure s2
let !_ = trace ("a': " ++ show a' ++ "\n") False
guard $ betaEquiv a a'
pure $ subst n b
findType g (Abs t v) = do
argType <- findType g t
guard $ isSort argType
bodyType <- findType (incIndices t : map incIndices g) v
resType <- findType g (Pi t bodyType)
guard $ isSort resType
pure $ Pi t bodyType
findType g (Pi t v) = do
let !_ = trace ("Pi rule: " ++ show t ++ "\t" ++ show v ++ "\n") False
argType <- findType g t
guard $ isSort argType
bodyType <- findType (incIndices t : map incIndices g) v
guard $ isSort bodyType
pure bodyType

View file

@ -3,96 +3,48 @@
module Expr where
import Data.Function (on)
import Data.List (genericDrop)
data Expr where
Var :: Integer -> String -> Expr
Var :: Integer -> Expr
Star :: Expr
Square :: Expr
App :: Expr -> Expr -> Expr
Abs :: String -> Expr -> Expr -> Expr
Pi :: String -> Expr -> Expr -> Expr
deriving (Show)
instance Eq Expr where
(Var n _) == (Var m _) = n == m
Star == Star = True
Square == Square = True
(App e1 e2) == (App f1 f2) = e1 == f1 && e2 == f2
(Abs _ t1 b1) == (Abs _ t2 b2) = t1 == t2 && b1 == b2
(Pi _ t1 b1) == (Pi _ t2 b2) = t1 == t2 && b1 == b2
_ == _ = False
infixl 4 <.>
(<.>) :: Expr -> Expr -> Expr
(<.>) = App
infixr 2 .->
(.->) :: Expr -> Expr -> Expr
a .-> b = Pi "" a (incIndices b)
Abs :: Expr -> Expr -> Expr
Pi :: Expr -> Expr -> Expr
deriving (Show, Eq)
occursFree :: Integer -> Expr -> Bool
occursFree n (Var k _) = n == k
occursFree n (Var k) = n == k
occursFree _ Star = False
occursFree _ Square = False
occursFree n (App a b) = on (||) (occursFree n) a b
occursFree n (Abs _ a b) = occursFree n a || occursFree (n + 1) b
occursFree n (Pi _ a b) = occursFree n a || occursFree (n + 1) b
occursFree n (App a b) = occursFree n a || occursFree n b
occursFree n (Abs a b) = occursFree n a || occursFree (n + 1) b
occursFree n (Pi a b) = occursFree n a || occursFree (n + 1) b
{- --------------------- PRETTY PRINTING ----------------------------- -}
parenthesize :: String -> String
parenthesize s = "(" ++ s ++ ")"
collectLambdas :: Expr -> ([(String, Expr)], Expr)
collectLambdas (Abs x ty body) = ((x, ty) : params, final)
where
(params, final) = collectLambdas body
collectLambdas e = ([], e)
collectPis :: Expr -> ([(String, Expr)], Expr)
collectPis p@(Pi "" _ _) = ([], p)
collectPis (Pi x ty body) = ((x, ty) : params, final)
where
(params, final) = collectPis body
collectPis e = ([], e)
groupParams :: [(String, Expr)] -> [([String], Expr)]
groupParams = foldr addParam []
where
addParam :: (String, Expr) -> [([String], Expr)] -> [([String], Expr)]
addParam (x, t) [] = [([x], t)]
addParam (x, t) l@((xs, s) : rest)
| incIndices t == s = (x : xs, t) : rest
| otherwise = ([x], t) : l
showParamGroup :: ([String], Expr) -> String
showParamGroup (ids, ty) = parenthesize $ unwords ids ++ " : " ++ pretty ty
helper :: Integer -> Expr -> String
helper _ (Var _ s) = s
helper _ Star = "*"
helper _ Square = ""
helper k (App e1 e2) = if k > 3 then parenthesize res else res
where
res = helper 3 e1 ++ " " ++ helper 4 e2
helper k (Pi "" t1 t2) = if k > 2 then parenthesize res else res
where
res = helper 3 t1 ++ " -> " ++ helper 2 t2
helper k e@(Pi{}) = if k > 2 then parenthesize res else res
where
(params, body) = collectPis e
grouped = showParamGroup <$> groupParams params
res = "" ++ unwords grouped ++ " . " ++ pretty body
helper k e@(Abs{}) = if k >= 1 then parenthesize res else res
where
(params, body) = collectLambdas e
grouped = showParamGroup <$> groupParams params
res = "λ " ++ unwords grouped ++ " . " ++ pretty body
-- TODO : store parsed identifiers for better printing
genName :: Integer -> String
genName k = case genericDrop k ["x", "y", "z", "w", "u", "v"] of
[] -> 'x' : show (k - 6)
(v : _) -> v
pretty :: Expr -> String
pretty = helper 0
where
helper :: Integer -> Expr -> String
helper k (Var n) = genName $ k - n - 1
helper _ Star = "*"
helper _ Square = ""
helper k (App e1 e2) = "(" ++ helper k e1 ++ " " ++ helper k e2 ++ ")"
helper k (Abs ty b) =
"" ++ genName k ++ " : " ++ helper k ty ++ " . " ++ helper (k + 1) b ++ ")"
helper k (Pi ty b) =
if occursFree 0 b
then
"(∏" ++ genName k ++ " : " ++ helper k ty ++ " . " ++ helper (k + 1) b ++ ")"
else "(" ++ helper k ty ++ " -> " ++ helper (k + 1) b ++ ")"
{- --------------- ACTUAL MATH STUFF ---------------- -}
@ -101,38 +53,46 @@ isSort Star = True
isSort Square = True
isSort _ = False
shiftIndices :: Integer -> Integer -> Expr -> Expr
shiftIndices d c (Var k x)
| k >= c = Var (k + d) x
| otherwise = Var k x
shiftIndices _ _ Star = Star
shiftIndices _ _ Square = Square
shiftIndices d c (App m n) = App (shiftIndices d c m) (shiftIndices d c n)
shiftIndices d c (Abs x m n) = Abs x (shiftIndices d c m) (shiftIndices d (c + 1) n)
shiftIndices d c (Pi x m n) = Pi x (shiftIndices d c m) (shiftIndices d (c + 1) n)
mapIndices :: (Integer -> Expr) -> Expr -> Expr
mapIndices f (Var n) = f n
mapIndices _ Star = Star
mapIndices _ Square = Square
mapIndices f (App m n) = App (mapIndices f m) (mapIndices f n)
mapIndices f (Abs m n) = Abs (mapIndices f m) (mapIndices f n)
mapIndices f (Pi m n) = Pi (mapIndices f m) (mapIndices f n)
incIndices :: Expr -> Expr
incIndices = shiftIndices 1 0
incIndices = mapIndices (Var . (+ 1))
-- substitute s for k *AND* decrement indices; only use after reducing a redex.
subst :: Integer -> Expr -> Expr -> Expr
subst k s (Var n x)
| k == n = s
| otherwise = Var (n - 1) x
subst _ _ Star = Star
subst _ _ Square = Square
subst k s (App m n) = App (subst k s m) (subst k s n)
subst k s (Abs x m n) = Abs x (subst k s m) (subst (k + 1) (incIndices s) n)
subst k s (Pi x m n) = Pi x (subst k s m) (subst (k + 1) (incIndices s) n)
decIndices :: Expr -> Expr
decIndices = mapIndices (Var . subtract 1)
-- substitute 0 for s *AND* decrement indices; only use after reducing a redex.
subst :: Expr -> Expr -> Expr
subst s (Var 0) = s
subst _ (Var n) = Var $ n - 1
subst _ Star = Star
subst _ Square = Square
subst s (App m n) = App (subst s m) (subst s n)
subst s (Abs m n) = Abs (subst s m) (subst s n)
subst s (Pi m n) = Pi (subst s m) (subst s n)
substnd :: Expr -> Expr -> Expr
substnd s (Var n) = if n == 0 then s else Var n
substnd _ Star = Star
substnd _ Square = Square
substnd s (App m n) = App (substnd s m) (substnd s n)
substnd s (Abs m n) = Abs (substnd s m) (substnd s n)
substnd s (Pi m n) = Pi (substnd s m) (substnd s n)
betaReduce :: Expr -> Expr
betaReduce (Var k s) = Var k s
betaReduce (Var k) = Var k
betaReduce Star = Star
betaReduce Square = Square
betaReduce (App (Abs _ _ v) n) = subst 0 n v
betaReduce (App (Abs _ v) n) = subst n v
betaReduce (App m n) = App (betaReduce m) (betaReduce n)
betaReduce (Abs x t v) = Abs x (betaReduce t) (betaReduce v)
betaReduce (Pi x t v) = Pi x (betaReduce t) (betaReduce v)
betaReduce (Abs t v) = Abs (betaReduce t) (betaReduce v)
betaReduce (Pi t v) = Pi (betaReduce t) (betaReduce v)
betaNF :: Expr -> Expr
betaNF e = if e == e' then e else betaNF e'

View file

@ -1,9 +1,9 @@
module Main where
import Check
import Expr
import Parser
import System.IO
import Check
main :: IO ()
main = do
@ -13,6 +13,6 @@ main = do
case pAll input of
Left err -> putStrLn err
Right expr -> case findType [] expr of
Right ty -> putStrLn $ pretty expr ++ " : " ++ pretty ty
Left err -> print err
Just ty -> putStrLn $ pretty expr ++ " : " ++ pretty ty
Nothing -> putStrLn $ "Unable to find type for " ++ pretty expr ++ "!"
main

View file

@ -2,90 +2,77 @@ module Parser where
import Control.Monad
import Control.Monad.State.Strict
import Data.Bifunctor (first)
import Data.Functor.Identity
import Data.List (elemIndex)
import Data.List.NonEmpty (NonEmpty ((:|)))
import Data.List.NonEmpty (NonEmpty((:|)))
import qualified Data.List.NonEmpty as NE
import Expr (Expr (..), incIndices, (.->))
import Expr (Expr (..))
import Text.Megaparsec hiding (State)
import Text.Megaparsec.Char
import qualified Text.Megaparsec.Char.Lexer as L
import Data.Bifunctor (first)
type InnerState = [String]
data CustomErrors = UnboundVariable String [String] deriving (Eq, Ord, Show)
instance ShowErrorComponent CustomErrors where
showErrorComponent (UnboundVariable var bound) =
"Unbound variable: " ++ var ++ ". Did you mean one of: " ++ unwords bound ++ "?"
showErrorComponent (UnboundVariable var bound) =
"Unbound variable: " ++ var ++ ". Did you mean one of: " ++ unwords bound ++ "?"
type Parser = ParsecT CustomErrors String (State InnerState)
skipSpace :: Parser ()
skipSpace =
L.space
space1
(L.skipLineComment "--")
(L.skipBlockCommentNested "(*" "*)")
L.space
space1
(L.skipLineComment "--")
(L.skipBlockCommentNested "(*" "*)")
lexeme :: Parser a -> Parser a
lexeme = L.lexeme skipSpace
pIdentifier :: Parser String
pIdentifier = label "identifier" $ lexeme $ do
firstChar <- letterChar <|> char '_'
rest <- many $ alphaNumChar <|> char '_'
return $ firstChar : rest
firstChar <- letterChar <|> char '_'
rest <- many $ alphaNumChar <|> char '_'
return $ firstChar : rest
pVar :: Parser Expr
pVar = label "variable" $ lexeme $ do
var <- pIdentifier
binders <- get
case elemIndex var binders of
Just i -> return $ Var (fromIntegral i) var
Nothing -> customFailure $ UnboundVariable var binders
var <- pIdentifier
binders <- get
case elemIndex var binders of
Just i -> return $ Var $ fromIntegral i
Nothing -> customFailure $ UnboundVariable var binders
defChoice :: NE.NonEmpty String -> Parser ()
defChoice options = lexeme $ label labelText $ void $ choice $ NE.map string options
where
labelText = NE.head options
pParamGroup :: Parser [(String, Expr)]
pParamGroup = lexeme $ label "parameter group" $ between (char '(') (char ')') $ do
idents <- some pIdentifier
_ <- defChoice $ ":" :| []
ty <- pExpr
modify (flip (foldl $ flip (:)) idents)
pure $ zip idents (iterate incIndices ty)
pParams :: Parser [(String, Expr)]
pParams = concat <$> some pParamGroup
where labelText = NE.head options
pLAbs :: Parser Expr
pLAbs = lexeme $ label "λ-abstraction" $ do
_ <- defChoice $ "λ" :| ["lambda", "fun"]
params <- pParams
_ <- defChoice $ "." :| ["=>", ""]
body <- pExpr
modify (drop $ length params)
pure $ foldr (uncurry Abs) body params
_ <- defChoice $ "λ" :| ["lambda"]
ident <- pIdentifier
_ <- defChoice $ ":" :| []
ty <- pExpr
_ <- defChoice $ "." :| []
modify (ident :)
body <- pExpr
modify $ drop 1
pure $ Abs ty body
pPAbs :: Parser Expr
pPAbs = lexeme $ label "Π-abstraction" $ do
_ <- defChoice $ "" :| ["Pi", "forall", ""]
params <- pParams
_ <- defChoice $ "." :| [","]
body <- pExpr
modify (drop $ length params)
pure $ foldr (uncurry Pi) body params
pArrow :: Parser Expr
pArrow = lexeme $ label "->" $ do
a <- pAppTerm
_ <- defChoice $ "->" :| [""]
b <- pExpr
pure $ a .-> b
_ <- defChoice $ "" :| ["Pi"]
ident <- pIdentifier
_ <- defChoice $ ":" :| []
ty <- pExpr
_ <- defChoice $ "." :| []
modify (ident :)
body <- pExpr
modify $ drop 1
pure $ Pi ty body
pApp :: Parser Expr
pApp = foldl1 App <$> some pTerm
@ -98,20 +85,17 @@ pSquare = Square <$ defChoice ("□" :| ["[]"])
pTerm :: Parser Expr
pTerm =
lexeme $
label "term" $
choice
[ between (char '(') (char ')') pExpr
, pVar
, pStar
, pSquare
]
pAppTerm :: Parser Expr
pAppTerm = lexeme $ pLAbs <|> pPAbs <|> pApp
lexeme $
label "term" $
choice
[ between (char '(') (char ')') pExpr,
pVar,
pStar,
pSquare
]
pExpr :: Parser Expr
pExpr = lexeme $ try pArrow <|> pAppTerm
pExpr = lexeme $ pLAbs <|> pPAbs <|> pApp
pAll :: String -> Either String Expr
pAll input = first errorBundlePretty $ fst $ runIdentity $ runStateT (runParserT pExpr "" input) []

View file

@ -6,12 +6,12 @@ cabal-version: 3.0
-- Starting from the specification version 2.2, the cabal-version field must be
-- the first thing in the cabal file.
-- Initial package description 'dependent-lambda' generated by
-- Initial package description 'lambda-D' generated by
-- 'cabal init'. For further documentation, see:
-- http://haskell.org/cabal/users-guide/
--
-- The name of the package.
name: dependent-lambda
name: lambda-D
-- The package version.
-- See the Haskell package versioning policy (PVP) for standards
@ -54,7 +54,7 @@ extra-doc-files: CHANGELOG.md
common warnings
ghc-options: -Wall
executable dependent-lambda
executable lambda-D
-- Import common warning flags.
import: warnings