{-# LANGUAGE TupleSections #-} module Eval where import Control.Monad.Except (MonadError (..)) import Control.Monad.Reader import qualified Data.Map as M import Data.Text (Text) import Errors import Expr type Env = M.Map Text Expr -- substitute s for k *AND* decrement indices; only use after reducing a redex. subst :: Integer -> Expr -> Expr -> Expr subst k s (Var n x) | k == n = s | n > k = Var (n - 1) x | otherwise = Var n x subst _ _ (Free s) = Free s subst _ _ Star = Star subst _ _ Square = Square subst k s (App m n) = App (subst k s m) (subst k s n) subst k s (Abs x m n) = Abs x (subst k s m) (subst (k + 1) (incIndices s) n) subst k s (Pi x m n) = Pi x (subst k s m) (subst (k + 1) (incIndices s) n) envLookup :: Text -> ReaderT Env Result Expr envLookup n = asks (M.lookup n) >>= maybe (throwError $ UnboundVariable n) pure -- reduce until β reducts are impossible in head position whnf :: Expr -> ReaderT Env Result Expr whnf (App (Abs _ _ v) n) = whnf $ subst 0 n v whnf (App m n) = do m' <- whnf m if m == m' then pure $ App m n else whnf $ App m' n whnf (Free n) = envLookup n whnf e = pure e reduce :: Expr -> ReaderT Env Result Expr reduce (App (Abs _ _ v) n) = pure $ subst 0 n v reduce (App m n) = App <$> reduce m <*> reduce n reduce (Abs x t v) = Abs x <$> reduce t <*> reduce v reduce (Pi x t v) = Pi x <$> reduce t <*> reduce v reduce (Free n) = envLookup n reduce e = pure e normalize :: Expr -> ReaderT Env Result Expr normalize e = do e' <- reduce e if e == e' then pure e else normalize e' -- naive beta equivalence check betaEquiv :: Expr -> Expr -> ReaderT Env Result Bool betaEquiv e1 e2 = (==) <$> normalize e1 <*> normalize e2 -- this slightly smarter beta equivalence check is a little buggy, -- failing to notice that `add one one` and `two` are beta equivalent in the -- example file -- betaEquiv :: Expr -> Expr -> ReaderT Env Result Bool -- betaEquiv e1 e2 -- | e1 == e2 = pure True -- | otherwise = do -- e1' <- whnf e1 -- e2' <- whnf e2 -- case (e1', e2') of -- (Var k1 _, Var k2 _) -> pure $ k1 == k2 -- (Free n, Free m) -> pure $ n == m -- (Free n, e) -> envLookup n >>= betaEquiv e -- (e, Free n) -> envLookup n >>= betaEquiv e -- (Star, Star) -> pure True -- (Abs _ t1 v1, Abs _ t2 v2) -> (&&) <$> betaEquiv t1 t2 <*> betaEquiv v1 v2 -- i want idiom brackets -- (Pi _ t1 v1, Pi _ t2 v2) -> (&&) <$> betaEquiv t1 t2 <*> betaEquiv v1 v2 -- _ -> pure False -- remaining cases impossible or false checkBeta :: Env -> Expr -> Expr -> Result Bool checkBeta env e1 e2 = runReaderT (betaEquiv e1 e2) env isSortPure :: Expr -> Bool isSortPure Star = True isSortPure Square = True isSortPure _ = False isSort :: Expr -> ReaderT Env Result (Bool, Expr) isSort s = (,s) . isSortPure <$> normalize s