@include logic.pg section Magma variable (G : ★); def binop := G → G → G; def = := eq G; infixl 1 =; variable (* : binop); infixl 20 *; def *> (a b : G) := b * a; infixl 20 *>; section Semigroup def assoc := forall (a b c : G), a * (b * c) = a * b * c; hypothesis (Hassoc : assoc); def assoc_op (a b c : G) : a *> (b *> c) = a *> b *> c := eq_sym G (a *> b *> c) (a *> (b *> c)) (Hassoc c b a); section Monoid variable (e : G); def id_l := forall (a : G), e * a = a; def id_r := forall (a : G), a * e = a; hypothesis (Hid_l : id_l); hypothesis (Hid_r : id_r); def id_l_op : forall (a : G), e *> a = a := Hid_r; def id_r_op : forall (a : G), a *> e = a := Hid_l; def left_id_unique (a : G) : #id_l G (*) a → a = e := fun (H : #id_l G (*) a) => eq_trans G a (a * e) e (eq_sym G (a * e) a (Hid_r a)) (H e); def right_id_unique (a : G) : #id_r G (*) a → a = e := #left_id_unique G (*>) e Hid_l a; section Group variable (i : G → G); hypothesis (Hinv_l : forall (a : G), i a * a = e); hypothesis (Hinv_r : forall (a : G), a * i a = e); def left_inv_unique (a b : G) (h : b * a = e) : b = i a := eq_trans G b (b * e) (i a) (eq_sym G (b * e) b (Hid_r b)) (eq_trans G (b * e) (b * (a * i a)) (i a) (eq_cong G G e (a * i a) ((*) b) (eq_sym G (a * i a) e (Hinv_r a))) (eq_trans G (b * (a * i a)) (b * a * i a) (i a) (Hassoc b a (i a)) (eq_trans G (b * a * i a) (e * i a) (i a) (eq_cong G G (b * a) e ([z : G] z * i a) h) (Hid_l (i a))))); def right_inv_unique (a b : G) (h : a * b = e) : b = i a := #left_inv_unique G (*>) assoc_op e Hid_r Hid_l i Hinv_l a b h; def inverse_involutive (a : G) : i (i a) = a := eq_sym G a (i (i a)) (right_inv_unique (i a) a (Hinv_l a)); def shoes_and_socks (a b : G) : i (a * b) = i b * i a := eq_sym G (i b * i a) (i (a * b)) (right_inv_unique (a * b) (i b * i a) (let (under_ai (x y : G) (h : x = y) := eq_cong G G x y ([z : G] z * (i a)) h) in eq_trans G (a * b * (i b * i a)) (a * b * i b * i a) e (Hassoc (a * b) (i b) (i a)) (eq_trans G (a * b * i b * i a) (a * (b * i b) * i a) e (under_ai (a * b * i b) (a * (b * i b)) (eq_sym G (a * (b * i b)) (a * b * i b) (Hassoc a b (i b)))) (eq_trans G (a * (b * i b) * i a) (a * e * i a) e (eq_cong G G (b * i b) e (fun (x : G) => (a * x * i a)) (Hinv_r b)) (eq_trans G (a * e * i a) (a * i a) e (under_ai (a * e) a (Hid_r a)) (Hinv_r a)))) end)); def cancel_l (a b c : G) (h : a * b = a * c) : b = c := eq_trans G b (e * b) c (eq_sym G (e * b) b (Hid_l b)) (eq_trans G (e * b) (i a * a * b) c (eq_cong G G e (i a * a) ([x : G] x * b) (eq_sym G (i a * a) e (Hinv_l a))) (eq_trans G (i a * a * b) (i a * (a * b)) c (eq_sym G (i a * (a * b)) (i a * a * b) (Hassoc (i a) a b)) (eq_trans G (i a * (a * b)) (i a * (a * c)) c (eq_cong G G (a * b) (a * c) ((*) (i a)) h) (eq_trans G (i a * (a * c)) (i a * a * c) c (Hassoc (i a) a c) (eq_trans G (i a * a * c) (e * c) c (eq_cong G G (i a * a) e ([x : G] x * c) (Hinv_l a)) (Hid_l c)))))); def cancel_r (a b c : G) (h : b * a = c * a) : b = c := #cancel_l G (*>) assoc_op e Hid_r i Hinv_r a b c h; def abelian : ★ := forall (a b : G), a * b = b * a; def left_right_cancel : (forall (x y z : G), x * y = z * x → y = z) → abelian := fun (h : forall (x y z : G), x * y = z * x → y = z) (a b : G) => h (i a) (a * b) (b * a) (eq_trans G (i a * (a * b)) (i a * a * b) (b * a * i a) (Hassoc (i a) a b) (eq_trans G (i a * a * b) (e * b) (b * a * i a) (eq_cong G G (i a * a) e ([x : G] x * b) (Hinv_l a)) (eq_trans G (e * b) b (b * a * i a) (Hid_l b) (eq_trans G b (b * e) (b * a * i a) (eq_sym G (b * e) b (Hid_r b)) (eq_trans G (b * e) (b * (a * i a)) (b * a * i a) (eq_cong G G e (a * i a) ((*) b) (eq_sym G (a * i a) e (Hinv_r a))) (Hassoc b a (i a))))))); def inv_distrib_abelian : (forall (a b : G), i (a * b) = i a * i b) → abelian := fun (h : forall (a b : G), i (a * b) = i a * i b) (a b : G) => eq_trans G (a * b) (i (i a) * b) (b * a) (eq_cong G G a (i (i a)) ([x : G] x * b) (eq_sym G (i (i a)) a (inverse_involutive a))) (eq_trans G (i (i a) * b) (i (i a) * i (i b)) (b * a) (eq_cong G G b (i (i b)) ((*) (i (i a))) (eq_sym G (i (i b)) b (inverse_involutive b))) (eq_trans G (i (i a) * i (i b)) (i (i b * i a)) (b * a) (eq_sym G (i (i b * i a)) (i (i a) * i (i b)) (shoes_and_socks (i b) (i a))) (eq_trans G (i (i b * i a)) (i (i b) * i (i a)) (b * a) (h (i b) (i a)) (eq_trans G (i (i b) * i (i a)) (b * i (i a)) (b * a) (eq_cong G G (i (i b)) b ([x : G] x * i (i a)) (inverse_involutive b)) (eq_cong G G (i (i a)) a ((*) b) (inverse_involutive a)))))); def order_two (a : G) : a * a = e → a = i a := right_inv_unique a a; def all_order_two_abelian : (forall (a : G), a * a = e) → abelian := fun (h : forall (a : G), a * a = e) => inv_distrib_abelian (fun (a b : G) => (eq_trans G (i (a * b)) (a * b) (i a * i b) (eq_sym G (a * b) (i (a * b)) (order_two (a * b) (h (a * b)))) (eq_trans G (a * b) (a * i b) (i a * i b) (eq_cong G G b (i b) ((*) a) (order_two b (h b))) (eq_cong G G a (i a) ([x : G] x * i b) (order_two a (h a)))))); end Group end Monoid end Semigroup end Magma