-- False def false : ★ := forall (A : ★), A; -- no introduction rule -- elimination rule def false_elim (A : ★) (contra : false) : A := contra A; -- -------------------------------------------------------------------------------------------------------------- -- True def true : ★ := forall (A : ★), A -> A; def true_intro : true := [A : ★][x : A] x; -- -------------------------------------------------------------------------------------------------------------- -- Negation def not (A : ★) : ★ := A -> false; -- introduction rule (kinda just the definition) def not_intro (A : ★) (h : A -> false) : not A := h; -- elimination rule def not_elim (A B : ★) (a : A) (na : not A) : B := na a B; -- can introduce double negation (can't eliminate it as that isn't constructive) def double_neg_intro (A : ★) (a : A) : not (not A) := fun (notA : not A) => notA a; -- -------------------------------------------------------------------------------------------------------------- -- Conjunction def ∧ (A B : ★) : ★ := A × B; infixl 10 ∧; -- introduction rule def and_intro (A B : ★) (a : A) (b : B) : A ∧ B := (a, b); -- left elimination rule def and_elim_l (A B : ★) (ab : A ∧ B) : A := π₁ ab; -- right elimination rule def and_elim_r (A B : ★) (ab : A ∧ B) : B := π₂ ab; -- -------------------------------------------------------------------------------------------------------------- -- Disjunction -- 2nd order disjunction def ∨ (A B : ★) : ★ := forall (C : ★), (A -> C) -> (B -> C) -> C; infixl 5 ∨; -- left introduction rule def or_intro_l (A B : ★) (a : A) : A ∨ B := fun (C : ★) (ha : A -> C) (hb : B -> C) => ha a; -- right introduction rule def or_intro_r (A B : ★) (b : B) : A ∨ B := fun (C : ★) (ha : A -> C) (hb : B -> C) => hb b; -- elimination rule (kinda just the definition) def or_elim (A B C : ★) (ab : A ∨ B) (ha : A -> C) (hb : B -> C) : C := ab C ha hb; -- -------------------------------------------------------------------------------------------------------------- -- Existential -- 2nd order existential def exists (A : ★) (P : A -> ★) : ★ := forall (C : ★), (forall (x : A), P x -> C) -> C; -- introduction rule def exists_intro (A : ★) (P : A -> ★) (a : A) (h : P a) : exists A P := fun (C : ★) (g : forall (x : A), P x -> C) => g a h; -- elimination rule (kinda just the definition) def exists_elim (A B : ★) (P : A -> ★) (ex_a : exists A P) (h : forall (a : A), P a -> B) : B := ex_a B h; -- -------------------------------------------------------------------------------------------------------------- -- Universal -- 2nd order universal (just ∏, including it for completeness) def all (A : ★) (P : A -> ★) : ★ := forall (a : A), P a; -- introduction rule def all_intro (A : ★) (P : A -> ★) (h : forall (a : A), P a) : all A P := h; -- elimination rule def all_elim (A : ★) (P : A -> ★) (h_all : all A P) (a : A) : P a := h_all a; -- -------------------------------------------------------------------------------------------------------------- -- Equality -- 2nd order Leibniz equality def eq (A : ★) (x y : A) := forall (P : A -> ★), P x -> P y; -- equality is reflexive def eq_refl (A : ★) (x : A) : eq A x x := fun (P : A -> ★) (Hx : P x) => Hx; -- equality is symmetric def eq_sym (A : ★) (x y : A) (Hxy : eq A x y) : eq A y x := fun (P : A -> ★) (Hy : P y) => Hxy (fun (z : A) => P z -> P x) (fun (Hx : P x) => Hx) Hy; -- equality is transitive def eq_trans (A : ★) (x y z : A) (Hxy : eq A x y) (Hyz : eq A y z) : eq A x z := fun (P : A -> ★) (Hx : P x) => Hyz P (Hxy P Hx); -- equality is a universal congruence def eq_cong (A B : ★) (x y : A) (f : A -> B) (H : eq A x y) : eq B (f x) (f y) := fun (P : B -> ★) (Hfx : P (f x)) => H (fun (a : A) => P (f a)) Hfx; -- -------------------------------------------------------------------------------------------------------------- -- unique existence def exists_uniq (A : ★) (P : A -> ★) : ★ := exists A (fun (x : A) => P x ∧ (forall (y : A), P y -> eq A x y)); def exists_uniq_elim (A B : ★) (P : A -> ★) (ex_a : exists_uniq A P) (h : forall (a : A), P a -> (forall (y : A), P y -> eq A a y) -> B) : B := exists_elim A B (fun (x : A) => P x ∧ (forall (y : A), P y -> eq A x y)) ex_a (fun (a : A) (h2 : P a ∧ (forall (y : A), P y -> eq A a y)) => h a (and_elim_l (P a) (forall (y : A), P y -> eq A a y) h2) (and_elim_r (P a) (forall (y : A), P y -> eq A a y) h2)); def exists_uniq_t (A : ★) : ★ := exists A (fun (x : A) => forall (y : A), eq A x y); def exists_uniq_t_elim (A B : ★) (ex_a : exists_uniq_t A) (h : forall (a : A), (forall (y : A), eq A a y) -> B) : B := exists_elim A B (fun (x : A) => forall (y : A), eq A x y) ex_a (fun (a : A) (h2 : forall (y : A), eq A a y) => h a h2); -- -------------------------------------------------------------------------------------------------------------- -- Some logic theorems section Theorems variable (A B C : ★); -- ~(A ∨ B) => ~A ∧ ~B def de_morgan1 (h : not (A ∨ B)) : not A ∧ not B := ( [a : A] h (or_intro_l A B a) , [b : B] h (or_intro_r A B b)); -- ~A ∧ ~B => ~(A ∨ B) def de_morgan2 (h : not A ∧ not B) : not (A ∨ B) := fun (contra : A ∨ B) => or_elim A B false contra (π₁ h) (π₂ h); -- ~A ∨ ~B => ~(A ∧ B) def de_morgan3 (h : not A ∨ not B) : not (A ∧ B) := fun (contra : A ∧ B) => or_elim (not A) (not B) false h (fun (na : not A) => na (π₁ contra)) (fun (nb : not B) => nb (π₂ contra)); -- the last one (~(A ∧ B) => ~A ∨ ~B) is not possible constructively -- A ∧ B => B ∧ A def and_comm (h : A ∧ B) : B ∧ A := (π₂ h, π₁ h); -- A ∨ B => B ∨ A def or_comm (h : A ∨ B) : B ∨ A := or_elim A B (B ∨ A) h ([a : A] or_intro_r B A a) ([b : B] or_intro_l B A b); -- A ∧ (B ∧ C) => (A ∧ B) ∧ C def and_assoc_l (h : A ∧ (B ∧ C)) : (A ∧ B) ∧ C := ((π₁ h, π₁ (π₂ h)), π₂ (π₂ h)); -- (A ∧ B) ∧ C => A ∧ (B ∧ C) def and_assoc_r (h : (A ∧ B) ∧ C) : A ∧ (B ∧ C) := (π₁ (π₁ h), (π₂ (π₁ h), π₂ h)); -- A ∨ (B ∨ C) => (A ∨ B) ∨ C def or_assoc_l (h : A ∨ (B ∨ C)) : (A ∨ B) ∨ C := or_elim A (B ∨ C) (A ∨ B ∨ C) h (fun (a : A) => or_intro_l (A ∨ B) C (or_intro_l A B a)) (fun (g : B ∨ C) => or_elim B C (A ∨ B ∨ C) g (fun (b : B) => or_intro_l (A ∨ B) C (or_intro_r A B b)) (fun (c : C) => or_intro_r (A ∨ B) C c)); -- (A ∨ B) ∨ C => A ∨ (B ∨ C) def or_assoc_r (h : (A ∨ B) ∨ C) : A ∨ (B ∨ C) := or_elim (A ∨ B) C (A ∨ (B ∨ C)) h (fun (g : A ∨ B) => or_elim A B (A ∨ (B ∨ C)) g (fun (a : A) => or_intro_l A (B ∨ C) a) (fun (b : B) => or_intro_r A (B ∨ C) (or_intro_l B C b))) (fun (c : C) => or_intro_r A (B ∨ C) (or_intro_r B C c)); -- A ∧ (B ∨ C) => A ∧ B ∨ A ∧ C def and_distrib_l_or (h : A ∧ (B ∨ C)) : A ∧ B ∨ A ∧ C := or_elim B C (A ∧ B ∨ A ∧ C) (π₂ h) (fun (b : B) => or_intro_l (A ∧ B) (A ∧ C) (π₁ h, b)) (fun (c : C) => or_intro_r (A ∧ B) (A ∧ C) (π₁ h, c)); -- A ∧ B ∨ A ∧ C => A ∧ (B ∨ C) def and_factor_l_or (h : A ∧ B ∨ A ∧ C) : A ∧ (B ∨ C) := or_elim (A ∧ B) (A ∧ C) (A ∧ (B ∨ C)) h (fun (ab : A ∧ B) => (π₁ ab, or_intro_l B C (π₂ ab))) (fun (ac : A ∧ C) => (π₁ ac, or_intro_r B C (π₂ ac))); -- Thanks Quinn! -- A ∨ B => ~B => A def disj_syllog (nb : not B) (hor : A ∨ B) : A := or_elim A B A hor ([a : A] a) ([b : B] nb b A); -- (A => B) => ~B => ~A def contrapositive (f : A -> B) (nb : not B) : not A := fun (a : A) => nb (f a); end Theorems