-- False false : * := forall (A : *), A; -- no introduction rule -- elimination rule false_elim (A : *) (contra : false) : A := contra A; -- -------------------------------------------------------------------------------------------------------------- -- Negation not (A : *) : * := A -> false; -- introduction rule (kinda just the definition) not_intro (A : *) (h : A -> false) : not A := h; -- elimination rule not_elim (A B : *) (a : A) (na : not A) : B := na a B; -- can introduce double negation (can't eliminate it as that isn't constructive) double_neg_intro (A : *) (a : A) : not (not A) := fun (notA : not A) => notA a; -- -------------------------------------------------------------------------------------------------------------- -- Conjunction and (A B : *) : * := forall (C : *), (A -> B -> C) -> C; -- introduction rule and_intro (A B : *) (a : A) (b : B) : and A B := fun (C : *) (H : A -> B -> C) => H a b; -- left elimination rule and_elim_l (A B : *) (ab : and A B) : A := ab A (fun (a : A) (b : B) => a); -- right elimination rule and_elim_r (A B : *) (ab : and A B) : B := ab B (fun (a : A) (b : B) => b); -- -------------------------------------------------------------------------------------------------------------- -- Disjunction -- 2nd order disjunction or (A B : *) : * := forall (C : *), (A -> C) -> (B -> C) -> C; -- left introduction rule or_intro_l (A B : *) (a : A) : or A B := fun (C : *) (ha : A -> C) (hb : B -> C) => ha a; -- right introduction rule or_intro_r (A B : *) (b : B) : or A B := fun (C : *) (ha : A -> C) (hb : B -> C) => hb b; -- elimination rule (kinda just the definition) or_elim (A B C : *) (ab : or A B) (ha : A -> C) (hb : B -> C) : C := ab C ha hb; -- -------------------------------------------------------------------------------------------------------------- -- Existential -- 2nd order existential exists (A : *) (P : A -> *) : * := forall (C : *), (forall (x : A), P x -> C) -> C; -- introduction rule exists_intro (A : *) (P : A -> *) (a : A) (h : P a) : exists A P := fun (C : *) (g : forall (x : A), P x -> C) => g a h; -- elimination rule (kinda just the definition) exists_elim (A B : *) (P : A -> *) (ex_a : exists A P) (h : forall (a : A), P a -> B) : B := ex_a B h; -- -------------------------------------------------------------------------------------------------------------- -- Universal -- 2nd order universal (just ∏, including it for completeness) all (A : *) (P : A -> *) : * := forall (a : A), P a; -- introduction rule all_intro (A : *) (P : A -> *) (h : forall (a : A), P a) : all A P := h; -- elimination rule all_elim (A : *) (P : A -> *) (h_all : all A P) (a : A) : P a := h_all a; -- -------------------------------------------------------------------------------------------------------------- -- Equality -- 2nd order Leibniz equality eq (A : *) (x y : A) := forall (P : A -> *), P x -> P y; -- equality is reflexive eq_refl (A : *) (x : A) : eq A x x := fun (P : A -> *) (Hx : P x) => Hx; -- equality is symmetric eq_sym (A : *) (x y : A) (Hxy : eq A x y) : eq A y x := fun (P : A -> *) (Hy : P y) => Hxy (fun (z : A) => P z -> P x) (fun (Hx : P x) => Hx) Hy; -- equality is transitive eq_trans (A : *) (x y z : A) (Hxy : eq A x y) (Hyz : eq A y z) : eq A x z := fun (P : A -> *) (Hx : P x) => Hyz P (Hxy P Hx); -- -------------------------------------------------------------------------------------------------------------- -- Some logic theorems -- ~(A ∨ B) => ~A ∧ ~B de_morgan1 (A B : *) (h : not (or A B)) : and (not A) (not B) := and_intro (not A) (not B) (fun (a : A) => h (or_intro_l A B a)) (fun (b : B) => h (or_intro_r A B b)); -- ~A ∧ ~B => ~(A ∨ B) de_morgan2 (A B : *) (h : and (not A) (not B)) : not (or A B) := fun (contra : or A B) => or_elim A B false contra (and_elim_l (not A) (not B) h) (and_elim_r (not A) (not B) h); -- ~A ∨ ~B => ~(A ∧ B) de_morgan3 (A B : *) (h : or (not A) (not B)) : not (and A B) := fun (contra : and A B) => or_elim (not A) (not B) false h (fun (na : not A) => na (and_elim_l A B contra)) (fun (nb : not B) => nb (and_elim_r A B contra)); -- the last one (~(A ∧ B) => ~A ∨ ~B) is not possible constructively -- A ∧ B => B ∧ A and_comm (A B : *) (h : and A B) : and B A := and_intro B A (and_elim_r A B h) (and_elim_l A B h); -- A ∨ B => B ∨ A or_comm (A B : *) (h : or A B) : or B A := or_elim A B (or B A) h (fun (a : A) => or_intro_r B A a) (fun (b : B) => or_intro_l B A b); -- A ∧ (B ∧ C) => (A ∧ B) ∧ C and_assoc_l (A B C : *) (h : and A (and B C)) : and (and A B) C := and_intro (and A B) C (and_intro A B (and_elim_l A (and B C) h) (and_elim_l B C (and_elim_r A (and B C) h))) (and_elim_r B C (and_elim_r A (and B C) h)); -- (A ∧ B) ∧ C => A ∧ (B ∧ C) and_assoc_r (A B C : *) (h : and (and A B) C) : and A (and B C) := and_intro A (and B C) (and_elim_l A B (and_elim_l (and A B) C h)) (and_intro B C (and_elim_r A B (and_elim_l (and A B) C h)) (and_elim_r (and A B) C h)); -- A ∨ (B ∨ C) => (A ∨ B) ∨ C or_assoc_l (A B C : *) (h : or A (or B C)) : or (or A B) C := or_elim A (or B C) (or (or A B) C) h (fun (a : A) => or_intro_l (or A B) C (or_intro_l A B a)) (fun (g : or B C) => or_elim B C (or (or A B) C) g (fun (b : B) => or_intro_l (or A B) C (or_intro_r A B b)) (fun (c : C) => or_intro_r (or A B) C c)); -- (A ∨ B) ∨ C => A ∨ (B ∨ C) or_assoc_r (A B C : *) (h : or (or A B) C) : or A (or B C) := or_elim (or A B) C (or A (or B C)) h (fun (g : or A B) => or_elim A B (or A (or B C)) g (fun (a : A) => or_intro_l A (or B C) a) (fun (b : B) => or_intro_r A (or B C) (or_intro_l B C b))) (fun (c : C) => or_intro_r A (or B C) (or_intro_r B C c)); -- A ∧ (B ∨ C) => A ∧ B ∨ A ∧ C and_distrib_l_or (A B C : *) (h : and A (or B C)) : or (and A B) (and A C) := or_elim B C (or (and A B) (and A C)) (and_elim_r A (or B C) h) (fun (b : B) => or_intro_l (and A B) (and A C) (and_intro A B (and_elim_l A (or B C) h) b)) (fun (c : C) => or_intro_r (and A B) (and A C) (and_intro A C (and_elim_l A (or B C) h) c)); -- -------------------------------------------------------------------------------------------------------------- -- very little very basic algebra -- what it means for a set and operation to be a semigroup semigroup (M : *) (op : M -> M -> M) : * := forall (a b c : M), eq M (op (op a b) c) (op a (op b c)); -- what it means for a set, operation, and identity element to be a monoid monoid (M : *) (op : M -> M -> M) (e : M) : * := and (semigroup M op) (and (forall (a : M), eq M (op a e) a) (forall (a : M), eq M (op e a) a)); -- identity elements in monoids are unique monoid_identity_unique (M : *) (op : M -> M -> M) (e : M) (Hmonoid : monoid M op e) (a : M) (H : forall (b : M), eq M (op a b) b) : eq M a e := eq_trans M a (op a e) e -- a = a * e (eq_sym M (op a e) a (and_elim_l (forall (a : M), eq M (op a e) a) (forall (a : M), eq M (op e a) a) (and_elim_r (semigroup M op) (and (forall (a : M), eq M (op a e) a) (forall (a : M), eq M (op e a) a)) Hmonoid) a)) -- a * e = e (H e); -- what it means for a set, operation, identity element, and inverse map to be a group group (G : *) (op : G -> G -> G) (e : G) (inv : G -> G) : * := and (monoid G op e) (and (forall (a : G), eq G (op a (inv a)) e) (forall (a : G), eq G (op (inv a) a) e)); -- -------------------------------------------------------------------------------------------------------------- -- Church numerals nat : * := forall (A : *), (A -> A) -> A -> A; -- zero is the constant function zero : nat := fun (A : *) (f : A -> A) (x : A) => x; -- `suc n` composes one more `f` than `n` suc : nat -> nat := fun (n : nat) (A : *) (f : A -> A) (x : A) => f ((n A f) x); -- addition as usual add : nat -> nat -> nat := fun (n m : nat) (A : *) (f : A -> A) (x : A) => (m A f) (n A f x); -- multiplication as usual mul : nat -> nat -> nat := fun (n m : nat) (A : *) (f : A -> A) (x : A) => (m A (n A f)) x; -- unforunately, I believe it is impossible to prove induction on Church numerals, -- which makes it really hard to prove standard theorems, or do anything really. -- with a primitive notion system, we could stipulate the existence of a type of -- natural numbers satisfying the Peano axioms, but I haven't implemented that yet.