@include logic.pg section Category variable (Obj : ★) (~> : Obj → Obj → ★); infixr 10 ~>; variable (id : forall (A : Obj), A ~> A) (comp : forall (A B C : Obj), A ~> B → B ~> C → A ~> C); hypothesis (id_l : forall (A B : Obj) (f : A ~> B), eq (A ~> B) (comp A A B (id A) f) f) (id_r : forall (A B : Obj) (f : B ~> A), eq (A ~> B) (comp B A A f (id A)) f) (assoc : forall (A B C D : Obj) (f : A ~> B) (g : B ~> C) (h : C ~> D), eq (A ~> D) (comp A B D f (comp B C D g h)) (comp A C D (comp A B C f g) h)); def initial (A : Obj) := forall (B : Obj), exists_uniq_t (A ~> B); def terminal (A : Obj) := forall (B : Obj), exists_uniq_t (B ~> A); def × (A B C : Obj) (piA : C ~> A) (piB : C ~> B) := forall (D : Obj) (f : D ~> A) (g : D ~> B), exists_uniq (D ~> C) (fun (fxg : D ~> C) => eq (D ~> A) (comp D C A fxg piA) f ∧ eq (D ~> B) (comp D C B fxg piB) g); section Inverses variable (A B : Obj) (f : A ~> B) (g : B ~> A); def inv_l := eq (A ~> A) (comp A B A f g) (id A); def inv_r := eq (B ~> B) (comp B A B g f) (id B); def inv := inv_l ∧ inv_r; end Inverses def ≅ (A B : Obj) := exists (A ~> B) (fun (f : A ~> B) => exists (B ~> A) (inv A B f)); infixl 20 ≅; def initial_uniq (A B : Obj) (hA : initial A) (hB : initial B) : A ≅ B := exists_uniq_t_elim (A ~> B) (A ≅ B) (hA B) (fun (f : A ~> B) (f_uniq : forall (y : A ~> B), eq (A ~> B) f y) => exists_uniq_t_elim (B ~> A) (A ≅ B) (hB A) (fun (g : B ~> A) (g_uniq : forall (y : B ~> A), eq (B ~> A) g y) => exists_uniq_t_elim (A ~> A) (A ≅ B) (hA A) (fun (a : A ~> A) (a_uniq : forall (y : A ~> A), eq (A ~> A) a y) => exists_uniq_t_elim (B ~> B) (A ≅ B) (hB B) (fun (b : B ~> B) (b_uniq : forall (y : B ~> B), eq (B ~> B) b y) => exists_intro (A ~> B) (fun (f : A ~> B) => exists (B ~> A) (inv A B f)) f (exists_intro (B ~> A) (inv A B f) g (and_intro (inv_l A B f g) (inv_r A B f g) (eq_trans (A ~> A) (comp A B A f g) a (id A) (eq_sym (A ~> A) a (comp A B A f g) (a_uniq (comp A B A f g))) (a_uniq (id A))) (eq_trans (B ~> B) (comp B A B g f) b (id B) (eq_sym (B ~> B) b (comp B A B g f) (b_uniq (comp B A B g f))) (b_uniq (id B))))))))); def terminal_uniq (A B : Obj) (hA : terminal A) (hB : terminal B) : A ≅ B := exists_uniq_t_elim (A ~> B) (A ≅ B) (hB A) (fun (f : A ~> B) (f_uniq : forall (y : A ~> B), eq (A ~> B) f y) => exists_uniq_t_elim (B ~> A) (A ≅ B) (hA B) (fun (g : B ~> A) (g_uniq : forall (y : B ~> A), eq (B ~> A) g y) => exists_uniq_t_elim (A ~> A) (A ≅ B) (hA A) (fun (a : A ~> A) (a_uniq : forall (y : A ~> A), eq (A ~> A) a y) => exists_uniq_t_elim (B ~> B) (A ≅ B) (hB B) (fun (b : B ~> B) (b_uniq : forall (y : B ~> B), eq (B ~> B) b y) => exists_intro (A ~> B) (fun (f : A ~> B) => exists (B ~> A) (inv A B f)) f (exists_intro (B ~> A) (inv A B f) g (and_intro (inv_l A B f g) (inv_r A B f g) (eq_trans (A ~> A) (comp A B A f g) a (id A) (eq_sym (A ~> A) a (comp A B A f g) (a_uniq (comp A B A f g))) (a_uniq (id A))) (eq_trans (B ~> B) (comp B A B g f) b (id B) (eq_sym (B ~> B) b (comp B A B g f) (b_uniq (comp B A B g f))) (b_uniq (id B))))))))); end Category