78 lines
3.8 KiB
Text
78 lines
3.8 KiB
Text
@include logic.pg
|
||
|
||
section Category
|
||
variable
|
||
(Obj : ★)
|
||
(~> : Obj -> Obj -> ★);
|
||
|
||
infixr 10 ~>;
|
||
|
||
variable
|
||
(id : forall (A : Obj), A ~> A)
|
||
(comp : forall (A B C : Obj), A ~> B -> B ~> C -> A ~> C);
|
||
|
||
hypothesis
|
||
(id_l : forall (A B : Obj) (f : A ~> B), eq (A ~> B) (comp A A B (id A) f) f)
|
||
(id_r : forall (A B : Obj) (f : B ~> A), eq (A ~> B) (comp B A A f (id A)) f)
|
||
(assoc : forall (A B C D : Obj) (f : A ~> B) (g : B ~> C) (h : C ~> D),
|
||
eq (A ~> D)
|
||
(comp A B D f (comp B C D g h))
|
||
(comp A C D (comp A B C f g) h));
|
||
|
||
def initial (A : Obj) := forall (B : Obj), exists_uniq_t (A ~> B);
|
||
def terminal (A : Obj) := forall (B : Obj), exists_uniq_t (B ~> A);
|
||
|
||
def × (A B C : Obj) (piA : C ~> A) (piB : C ~> B) :=
|
||
forall (D : Obj) (f : D ~> A) (g : D ~> B),
|
||
exists_uniq (D ~> C) (fun (fxg : D ~> C) =>
|
||
(eq (D ~> A) (comp D C A fxg piA) f)
|
||
∧ (eq (D ~> B) (comp D C B fxg piB) g));
|
||
|
||
section Inverses
|
||
variable
|
||
(A B : Obj)
|
||
(f : A ~> B)
|
||
(g : B ~> A);
|
||
|
||
def inv_l := eq (A ~> A) (comp A B A f g) (id A);
|
||
def inv_r := eq (B ~> B) (comp B A B g f) (id B);
|
||
|
||
def inv := inv_l ∧ inv_r;
|
||
end Inverses
|
||
|
||
def ≅ (A B : Obj) :=
|
||
exists (A ~> B) (fun (f : A ~> B) =>
|
||
exists (B ~> A) (inv A B f));
|
||
|
||
infixl 20 ≅;
|
||
|
||
def initial_uniq (A B : Obj) (hA : initial A) (hB : initial B) : A ≅ B :=
|
||
exists_uniq_t_elim (A ~> B) (A ≅ B) (hA B) (fun (f : A ~> B) (f_uniq : forall (y : A ~> B), eq (A ~> B) f y) =>
|
||
exists_uniq_t_elim (B ~> A) (A ≅ B) (hB A) (fun (g : B ~> A) (g_uniq : forall (y : B ~> A), eq (B ~> A) g y) =>
|
||
exists_uniq_t_elim (A ~> A) (A ≅ B) (hA A) (fun (a : A ~> A) (a_uniq : forall (y : A ~> A), eq (A ~> A) a y) =>
|
||
exists_uniq_t_elim (B ~> B) (A ≅ B) (hB B) (fun (b : B ~> B) (b_uniq : forall (y : B ~> B), eq (B ~> B) b y) =>
|
||
exists_intro (A ~> B) (fun (f : A ~> B) => exists (B ~> A) (inv A B f)) f
|
||
(exists_intro (B ~> A) (inv A B f) g
|
||
(and_intro (inv_l A B f g) (inv_r A B f g)
|
||
(eq_trans (A ~> A) (comp A B A f g) a (id A)
|
||
(eq_sym (A ~> A) a (comp A B A f g) (a_uniq (comp A B A f g)))
|
||
(a_uniq (id A)))
|
||
(eq_trans (B ~> B) (comp B A B g f) b (id B)
|
||
(eq_sym (B ~> B) b (comp B A B g f) (b_uniq (comp B A B g f)))
|
||
(b_uniq (id B)))))))));
|
||
|
||
def terminal_uniq (A B : Obj) (hA : terminal A) (hB : terminal B) : A ≅ B :=
|
||
exists_uniq_t_elim (A ~> B) (A ≅ B) (hB A) (fun (f : A ~> B) (f_uniq : forall (y : A ~> B), eq (A ~> B) f y) =>
|
||
exists_uniq_t_elim (B ~> A) (A ≅ B) (hA B) (fun (g : B ~> A) (g_uniq : forall (y : B ~> A), eq (B ~> A) g y) =>
|
||
exists_uniq_t_elim (A ~> A) (A ≅ B) (hA A) (fun (a : A ~> A) (a_uniq : forall (y : A ~> A), eq (A ~> A) a y) =>
|
||
exists_uniq_t_elim (B ~> B) (A ≅ B) (hB B) (fun (b : B ~> B) (b_uniq : forall (y : B ~> B), eq (B ~> B) b y) =>
|
||
exists_intro (A ~> B) (fun (f : A ~> B) => exists (B ~> A) (inv A B f)) f
|
||
(exists_intro (B ~> A) (inv A B f) g
|
||
(and_intro (inv_l A B f g) (inv_r A B f g)
|
||
(eq_trans (A ~> A) (comp A B A f g) a (id A)
|
||
(eq_sym (A ~> A) a (comp A B A f g) (a_uniq (comp A B A f g)))
|
||
(a_uniq (id A)))
|
||
(eq_trans (B ~> B) (comp B A B g f) b (id B)
|
||
(eq_sym (B ~> B) b (comp B A B g f) (b_uniq (comp B A B g f)))
|
||
(b_uniq (id B)))))))));
|
||
end Category
|