perga/lib/Eval.hs
2024-12-08 19:37:56 -08:00

118 lines
4 KiB
Haskell

{-# LANGUAGE NamedFieldPuns #-}
module Eval where
import Control.Monad.Error.Class
import qualified Data.Map.Strict as M
import Errors
import Expr
import Relude.Extra.Lens
data Definition = Def {_ty :: Expr, _val :: Expr}
tyL :: Lens' Definition Expr
tyL = lens _ty setter
where
setter (Def{_val}) new = Def{_val, _ty = new}
valL :: Lens' Definition Expr
valL = lens _val setter
where
setter (Def{_ty}) new = Def{_val = new, _ty}
type Env = Map Text Definition
emptyEnv :: Env
emptyEnv = M.empty
showEnvEntry :: Text -> Definition -> Text
showEnvEntry k Def{_ty = t} = k <> " : " <> prettyT t
dumpEnv :: Env -> IO ()
dumpEnv = void . M.traverseWithKey ((putTextLn .) . showEnvEntry)
-- substitute s for k *AND* decrement indices; only use after reducing a redex.
subst :: Integer -> Expr -> Expr -> Expr
subst k s (Var x n)
| k == n = s
| n > k = Var x (n - 1)
| otherwise = Var x n
subst _ _ (Free s) = Free s
subst _ _ (Axiom s) = Axiom s
subst _ _ Star = Star
subst _ _ (Level i) = Level i
subst k s (App m n) = App (subst k s m) (subst k s n)
subst k s (Abs x m a n) = Abs x (subst k s m) a (subst (k + 1) (incIndices s) n)
subst k s (Pi x m a n) = Pi x (subst k s m) a (subst (k + 1) (incIndices s) n)
subst k s (Let x t v b) = Let x t (subst k s v) (subst (k + 1) (incIndices s) b)
envLookupVal :: Text -> ReaderT Env Result Expr
envLookupVal n = asks ((_val <$>) . M.lookup n) >>= maybe (throwError $ UnboundVariable n) pure
envLookupTy :: Text -> ReaderT Env Result Expr
envLookupTy n = asks ((_ty <$>) . M.lookup n) >>= maybe (throwError $ UnboundVariable n) pure
-- reduce until β reducts or let simplifications are impossible in head position
whnf :: Expr -> ReaderT Env Result Expr
whnf (App (Abs _ _ _ v) n) = whnf $ subst 0 n v
whnf (App m n) = do
m' <- whnf m
if m == m'
then pure $ App m n
else whnf $ App m' n
whnf (Free n) = envLookupVal n >>= whnf
whnf (Let _ _ v b) = whnf $ subst 0 v b
whnf e = pure e
reduce :: Expr -> ReaderT Env Result Expr
reduce (App (Abs _ _ _ v) n) = pure $ subst 0 n v
reduce (App m n) = App <$> reduce m <*> reduce n
reduce (Abs x t a v) = Abs x <$> reduce t <*> pure a <*> reduce v
reduce (Pi x t a v) = Pi x <$> reduce t <*> pure a <*> reduce v
reduce (Free n) = envLookupVal n
reduce (Let _ _ v b) = pure $ subst 0 v b
reduce e = pure e
normalize :: Expr -> ReaderT Env Result Expr
normalize e = do
e' <- reduce e
if e == e'
then pure e
else normalize e'
betaEquiv :: Expr -> Expr -> ReaderT Env Result Bool
betaEquiv e1 e2
| e1 == e2 = pure True
| otherwise = do
e1' <- whnf e1
e2' <- whnf e2
case (e1', e2') of
(Var _ n1, Var _ n2) -> pure $ n1 == n2
(Free n, Free m) -> pure $ n == m
(Free n, e) -> envLookupVal n >>= betaEquiv e
(e, Free n) -> envLookupVal n >>= betaEquiv e
(Axiom n1, Axiom n2) -> pure $ n1 == n2
(Star, Star) -> pure True
(Level i, Level j) -> pure $ i == j
(App m1 n1, App m2 n2) -> (&&) <$> betaEquiv m1 m2 <*> betaEquiv n1 n2
(Abs _ t1 _ v1, Abs _ t2 _ v2) -> (&&) <$> betaEquiv t1 t2 <*> betaEquiv v1 v2 -- i want idiom brackets
(Pi _ t1 _ v1, Pi _ t2 _ v2) -> (&&) <$> betaEquiv t1 t2 <*> betaEquiv v1 v2
(Let _ _ v b, e) -> betaEquiv (subst 0 v b) e
(e, Let _ _ v b) -> betaEquiv (subst 0 v b) e
_ -> pure False -- remaining cases impossible, false, or redundant
betaEquiv' :: Expr -> Expr -> Expr -> ReaderT Env Result ()
betaEquiv' ctxt e1 e2 = unlessM (betaEquiv e1 e2) $ throwError $ NotEquivalent e1 e2 ctxt
checkBeta :: Env -> Expr -> Expr -> Expr -> Result ()
checkBeta env e1 e2 ctxt = case runReaderT (betaEquiv e1 e2) env of
Left err -> Left err
Right False -> Left $ NotEquivalent e1 e2 ctxt
Right True -> Right ()
isSortPure :: Expr -> Bool
isSortPure (Level _) = True
isSortPure _ = False
isSort :: Expr -> ReaderT Env Result Bool
isSort = fmap isSortPure . whnf