type-theory-and-formal-proofs/lambda.v

269 lines
8.1 KiB
Coq
Raw Normal View History

2024-07-15 07:49:33 -07:00
Require Import PeanoNat.
Import Nat.
Require Import Lists.List.
Import ListNotations.
Inductive type : Set :=
| tyvar : nat -> type
| arrow : type -> type -> type.
Scheme Equality for type.
Inductive term : Set :=
| var : nat -> term
| free : nat -> term
| app : term -> term -> term
| abs : type -> term -> term.
Declare Custom Entry lambda.
Notation "<{ e }>" := e (e custom lambda at level 99).
Notation "( x )" := x (in custom lambda, x at level 99).
Notation "{ x }" := x (x at level 99).
Notation "x" := x (in custom lambda at level 0, x constr at level 0).
Notation "S -> T" := (arrow S T) (in custom lambda at level 50, right associativity).
Notation "x y" := (app x y) (in custom lambda at level 1, left associativity).
Notation "'λ' t , x" :=
(abs t x) (in custom lambda at level 90,
t custom lambda at level 99,
x custom lambda at level 99,
left associativity).
Coercion var : nat >-> term.
Reserved Notation "'[' x ':=' s ']' t" (in custom lambda at level 20).
Fixpoint substi (x : nat) (s t : term) : term :=
match t with
| var y => if x =? y then s else var y
| free y => free y
| <{ m n }> => <{ ([x := s] m) ([x := s] n) }>
| <{ λ α, m }> => <{ λ α, [x := s] m }>
end
where "'[' x ':=' s ']' t" := (substi x s t) (in custom lambda).
Fixpoint β_reduce (m : term) : term :=
match m with
| var x => var x
| free x => free x
| <{ (λ α , m) n }> => <{ [0 := n] m }>
| <{ m n }> => <{ {β_reduce m} {β_reduce n} }>
| <{ λ α, m }> => <{ λ α , {β_reduce m} }>
end.
Fixpoint β_nf (m : term) : bool :=
match m with
| var _ => true
| free _ => true
| <{ (λ α, m) n }> => false
| <{ m n }> => β_nf m && β_nf n
| <{ λ α, m }> => β_nf m
end.
Reserved Notation "E ';' Γ '|-' t '::' T"
(at level 101, t custom lambda, T custom lambda at level 0).
Definition context := list type.
Definition environment := list (nat * type).
Fixpoint lookup (E : environment) (x : nat) : option type :=
match E with
| [] => None
| (x', σ) :: rest => if x =? x' then Some σ else lookup rest x
end.
Lemma lookup_in : forall E x σ,
lookup E x = Some σ -> In (x, σ) E.
Proof.
induction E.
- simpl; discriminate.
- intros.
destruct a as [y τ].
simpl in H.
destruct (x =? y) eqn:Heq.
{ apply eqb_eq in Heq; subst; inversion H; simpl; left; reflexivity. }
simpl.
right.
auto.
Qed.
Inductive derivation : environment -> context -> term -> type -> Prop :=
| free_rule : forall E Γ x σ,
lookup E x = Some σ -> E ; Γ |- {free x} :: σ
| var_rule : forall E Γ x σ,
nth_error Γ x = Some σ -> E ; Γ |- x :: σ
| app_rule : forall E Γ t1 t2 σ τ,
(E ; Γ |- t1 :: (σ -> τ)) ->
(E ; Γ |- t2 :: σ) ->
(E ; Γ |- t1 t2 :: τ)
| abs_rule : forall E Γ σ τ m,
(E ; σ :: Γ |- m :: τ) ->
(E ; Γ |- λ σ, m :: (σ -> τ))
where "E ; Γ '|-' t '::' T" := (derivation E Γ t T).
Hint Constructors derivation : core.
Theorem uniqueness_of_types : forall E Γ t σ τ,
E ; Γ |- t :: σ -> E ; Γ |- t :: τ -> σ = τ.
Proof.
intros E Γ t.
generalize dependent Γ.
induction t; intros; inversion H; inversion H0; subst;
try (rewrite H4 in H9; inversion H9; reflexivity).
- apply (IHt1 Γ <{σ0 -> σ}> <{σ1 -> τ}> H5) in H12.
inversion H12.
reflexivity.
- assert (G : τ0 = τ1) ; eauto.
subst.
reflexivity.
Qed.
Fixpoint find_type (E : environment) (Γ : context) (m : term) : option type :=
match m with
| var x => nth_error Γ x
| free x => lookup E x
| app t1 t2 => match find_type E Γ t1, find_type E Γ t2 with
| Some (<{ σ -> τ }>), Some σ' =>
if type_eq_dec σ σ'
then Some τ
else None
| _, _ => None
end
| abs σ t => option_map (arrow σ) (find_type E (σ :: Γ) t)
end.
Theorem find_type_correct : forall E Γ t σ,
find_type E Γ t = Some σ -> E ; Γ |- t :: σ.
Proof.
intros E Γ t.
generalize dependent Γ.
induction t ; auto.
- intros.
simpl in H.
destruct (find_type E Γ t1) eqn:Heq ; inversion H.
destruct t0 ; inversion H.
destruct (find_type E Γ t2) eqn:Heq2; inversion H.
destruct (type_eq_dec t0_1 t0); inversion H.
subst.
eauto.
- intros.
simpl in H.
destruct (find_type E (t0 :: Γ) t1) eqn:Heq; inversion H.
auto.
Qed.
(* Fixpoint reverse_lookup_env (E : environment) (σ : type) : option nat := *)
(* match E with *)
(* | [] => None *)
(* | (x, σ') :: rest => *)
(* if type_eq_dec σ σ' then Some x else reverse_lookup_env rest σ *)
(* end. *)
(* Definition env_no_dup (E : environment) := forall x σ σ', *)
(* In (x, σ) E -> In (x, σ') E -> σ = σ'. *)
(* Lemma reverse_lookup_env_correct : forall E x σ, *)
(* env_no_dup E -> reverse_lookup_env E σ = Some x -> lookup E x = Some σ. *)
(* Proof. *)
(* induction E. *)
(* - simpl. *)
(* discriminate. *)
(* - intros. *)
(* destruct a as [y τ]. *)
(* simpl in *. *)
(* destruct (eq_dec x y). *)
(* + rewrite e. *)
(* rewrite eqb_refl. *)
(* unfold env_no_dup in H. *)
(* specialize H with (x := y) (σ := σ) (σ' := τ) as H'. *)
(* apply (f_equal Some). *)
(* symmetry. *)
(* apply H'; try (simpl; left; subst; reflexivity). *)
(* destruct (type_eq_dec σ τ). *)
(* { simpl. left. rewrite e0. reflexivity. } *)
(* simpl. *)
(* right. *)
(* apply lookup_in. *)
(* apply IHE. *)
(* * unfold env_no_dup. *)
(* intros. *)
(* apply H with (x := x0); simpl; right; assumption. *)
(* * subst. *)
(* assumption. *)
(* + apply eqb_neq in n as n'. *)
(* rewrite n'. *)
(* apply IHE. *)
(* * unfold env_no_dup. *)
(* intros. *)
(* apply H with (x := x0); simpl; right; assumption. *)
(* * destruct (type_eq_dec σ τ). *)
(* { inversion H0. symmetry in H2. contradiction. } *)
(* assumption. *)
(* Qed. *)
(* Fixpoint reverse_lookup_context (Γ : context) (σ : type) : option nat := *)
(* match Γ with *)
(* | [] => None *)
(* | σ' :: rest => if type_eq_dec σ σ' *)
(* then Some 0 *)
(* else option_map S (reverse_lookup_context rest σ) *)
(* end. *)
(* Lemma reverse_lookup_context_correct : forall Γ n σ, *)
(* reverse_lookup_context Γ σ = Some n -> nth_error Γ n = Some σ. *)
(* Proof. *)
(* induction Γ. *)
(* - intros. *)
(* inversion H. *)
(* - intros. *)
(* induction n. *)
(* + simpl in *. *)
(* destruct (type_eq_dec σ a). *)
(* { rewrite e; reflexivity. } *)
(* destruct (reverse_lookup_context Γ σ); inversion H. *)
(* + simpl. *)
(* apply IHΓ. *)
(* simpl in H. *)
(* destruct (type_eq_dec σ a) ; inversion H. *)
(* clear H1. *)
(* destruct (reverse_lookup_context Γ σ) ; inversion H. *)
(* reflexivity. *)
(* Qed. *)
(* Definition or_else {A} (x1 x2 : option A) : option A := *)
(* match x1, x2 with *)
(* | Some x, _ => Some x *)
(* | _, Some x => Some x *)
(* | _, _ => None *)
(* end. *)
(* Hint Unfold or_else : core. *)
(* Fixpoint find_term (E : environment) (Γ : context) (σ : type) : option term := *)
(* match σ with *)
(* | tyvar n => (or_else (option_map var (reverse_lookup_context Γ σ)) *)
(* (option_map free (reverse_lookup_env E σ))) *)
(* | arrow σ1 σ2 => option_map (abs σ1) (find_term E (σ1 :: Γ) σ2) *)
(* end. *)
(* Theorem find_term_correct : forall E Γ t σ, *)
(* env_no_dup E -> *)
(* find_term E Γ σ = Some t -> *)
(* E ; Γ |- t :: σ. *)
(* Proof. *)
(* intros. *)
(* generalize dependent Γ. *)
(* generalize dependent t0. *)
(* induction σ. *)
(* - intros t Γ H1. *)
(* simpl in *. *)
(* destruct (reverse_lookup_context Γ (tyvar n)) eqn:Hcon; *)
(* destruct (reverse_lookup_env E (tyvar n)) eqn:Henv; *)
(* simpl in H1; inversion H1; subst; *)
(* auto using reverse_lookup_context_correct; *)
(* auto using reverse_lookup_env_correct. *)
(* - intros t Γ H1. *)
(* simpl in H1. *)
(* destruct (find_term E (σ1 :: Γ) σ2) eqn:Heq; inversion H1; auto. *)
(* Qed. *)