Require Import PeanoNat. Import Nat. Require Import Lists.List. Import ListNotations. Require Import Setoid. Require Import Relation_Definitions. Require Import Morphisms. Require Import Relations.Relation_Operators. Inductive type : Set := | tyvar : nat -> type | tyfree : nat -> type | arrow : type -> type -> type | pi : type -> type. Scheme Equality for type. Inductive term : Set := | var : nat -> term | free : nat -> term | app1 : term -> term -> term | app2 : term -> type -> term | abs1 : type -> term -> term | abs2 : term -> term. Declare Custom Entry lambda. Notation "<{ e }>" := e (e custom lambda at level 99). Notation "( x )" := x (in custom lambda, x at level 99). Notation "< x >" := (tyvar x) (in custom lambda, x at level 99). Notation "{ x }" := x (x at level 99). Notation "x" := x (in custom lambda at level 0, x constr at level 0). Notation "S -> T" := (arrow S T) (in custom lambda at level 50, right associativity). Notation "'Π' b" := (pi b) (in custom lambda at level 90, b custom lambda at level 99, left associativity). Notation "x · y" := (app1 x y) (in custom lambda at level 1, left associativity). Notation "x ∙ y" := (app2 x y) (in custom lambda at level 1, left associativity). Notation "'λ' t , x" := (abs1 t x) (in custom lambda at level 90, t custom lambda at level 99, x custom lambda at level 99, left associativity). Notation "'λ' , x" := (abs2 x) (in custom lambda at level 90, x custom lambda at level 99, left associativity). Coercion var : nat >-> term. Definition context := list type. Definition environment := list (nat * type). Fixpoint lookup (E : environment) (x : nat) : option type := match E with | [] => None | (x', σ) :: rest => if x =? x' then Some σ else lookup rest x end. Lemma lookup_in : forall E x σ, lookup E x = Some σ -> In (x, σ) E. Proof. induction E. - simpl; discriminate. - intros. destruct a as [y τ]. simpl in H. destruct (x =? y) eqn:Heq. { apply eqb_eq in Heq; subst; inversion H; simpl; left; reflexivity. } simpl. right. auto. Qed. Reserved Notation "'[' x ':=' s ']' t" (in custom lambda at level 20). Fixpoint substi (x : nat) (s t : term) : term := match t with | var y => if x =? y then s else var y | free y => free y | <{ m · n }> => <{ ([x := s] m) · ([x := s] n) }> | <{ m ∙ n }> => <{ ([x := s] m) ∙ n }> | <{ λ α, m }> => <{ λ α, [{x + 1} := s] m }> | <{ λ , m }> => <{ λ , [x := s] m }> end where "'[' x ':=' s ']' t" := (substi x s t) (in custom lambda). Reserved Notation "'[' x ':=' s ']ₐ' t" (in custom lambda at level 20). Fixpoint ty_subst (x : nat) (s : type) (t : type) : type := match t with | tyvar n => if n =? x then s else tyvar n | tyfree y => tyfree y | <{ α -> β }> => <{ [ x := s ]ₐ α -> [ x := s ]ₐ β }> | <{ Π α }> => <{ Π [ {x + 1} := s ]ₐ α }> end where "'[' x ':=' s ']ₐ' t" := (ty_subst x s t) (in custom lambda). Reserved Notation "'[' x ':=' s ']ₜ' t" (in custom lambda at level 20). Fixpoint substiₜ (x : nat) (s : type) (t : term) : term := match t with | var y => var y | free y => free y | <{ m · n }> => <{ ([ x := s ]ₜ m) · ([ x := s ]ₜ n) }> | <{ m ∙ n }> => if type_eq_dec n (tyvar x) then <{ m ∙ s }> else <{ ([ x := s ]ₜ m) ∙ ([ x := s ]ₐ n) }> | <{ λ α, m }> => <{ λ α, [ x := s ]ₜ m }> | <{ λ , m }> => <{ λ , [ x := s ]ₜ m }> end where "'[' x ':=' s ']ₜ' t" := (substiₜ x s t) (in custom lambda). Reserved Notation "E ';' Γ '|-' t '::' T" (at level 101, t custom lambda, T custom lambda at level 0). Inductive derivation : environment -> context -> term -> type -> Prop := | free_rule : forall E Γ x σ, lookup E x = Some σ -> E ; Γ |- {free x} :: σ | var_rule : forall E Γ x σ, nth_error Γ x = Some σ -> E ; Γ |- x :: σ | app_rule1 : forall E Γ t1 t2 σ τ, (E ; Γ |- t1 :: (σ -> τ)) -> (E ; Γ |- t2 :: σ) -> (E ; Γ |- t1 · t2 :: τ) | app_rule2 : forall E Γ m a b, (E ; Γ |- m :: Π a) -> (E ; Γ |- m ∙ b :: ([ 0 := b ]ₐ a)) | abs_rule1 : forall E Γ σ τ m, (E ; σ :: Γ |- m :: τ) -> (E ; Γ |- λ σ, m :: (σ -> τ)) | abs_rule2 : forall E Γ m a, (E ; Γ |- m :: a) -> (E ; Γ |- λ, m :: Π a) where "E ; Γ '|-' t '::' T" := (derivation E Γ t T). Hint Constructors derivation : core. Section examples. Let α := tyfree 0. Let β := tyfree 1. Let γ := tyfree 2. Example identity : [] ; [] |- λ , (λ <0>, 0) :: Π <0> -> <0>. Proof using Type. auto. Qed. Example identity_spec : [] ; [] |- (λ , λ <0>, 0) ∙ α :: (α -> α). Proof using Type. apply app_rule2 with (a := <{<0> -> <0>}>). exact identity. Qed. Example comp : [] ; [] |- λ , λ , λ , λ <2> -> <1>, λ <1> -> <0>, λ <2>, 1 · (2 · 0) :: Π Π Π (<2> -> <1>) -> (<1> -> <0>) -> <2> -> <0>. Proof using Type. repeat econstructor. Qed. Example comp_spec : [] ; [] |- ((λ , λ , λ , λ <2> -> <1>, λ <1> -> <0>, λ <2>, 1 · (2 · 0)) ∙ α ∙ β ∙ γ) :: ((α -> β) -> (β -> γ) -> α -> γ). Proof using Type. apply app_rule2 with (a := <{(α -> β) -> (β -> <0>) -> α -> <0>}>). apply app_rule2 with (a := <{Π (α -> <1>) -> (<1> -> <0>) -> α -> <0>}>). apply app_rule2 with (a := <{Π Π (<2> -> <1>) -> (<1> -> <0>) -> <2> -> <0>}>). repeat econstructor. Qed. Example book : [] ; [] |- λ , λ <0> -> <0>, λ <0>, 1 · (1 · 0) :: Π (<0> -> <0>) -> <0> -> <0>. Proof using Type. repeat econstructor. Qed. End examples. Theorem uniqueness_of_types : forall E Γ t σ τ, E ; Γ |- t :: σ -> E ; Γ |- t :: τ -> σ = τ. Proof. intros E Γ t. generalize dependent Γ. induction t; intros; inversion H; inversion H0; subst; try (rewrite H4 in H9; inversion H9; reflexivity). - apply (IHt1 Γ <{σ0 -> σ}> <{σ1 -> τ}> H5) in H12. inversion H12. reflexivity. - assert (G : pi a = pi a0) ; eauto. inversion G. reflexivity. - assert (G : τ0 = τ1) ; eauto. subst. reflexivity. - apply (f_equal pi). eauto. Qed. Fixpoint find_type (E : environment) (Γ : context) (m : term) : option type := match m with | var x => nth_error Γ x | free x => lookup E x | app1 t1 t2 => match find_type E Γ t1, find_type E Γ t2 with | Some (<{ σ -> τ }>), Some σ' => if type_eq_dec σ σ' then Some τ else None | _, _ => None end | app2 t σ => match find_type E Γ t with | Some (pi τ) => Some <{[ 0 := σ ]ₐ τ}> | _ => None end | abs1 σ t => option_map (arrow σ) (find_type E (σ :: Γ) t) | abs2 t => option_map pi (find_type E Γ t) end. Theorem find_type_correct : forall E Γ t σ, find_type E Γ t = Some σ -> E ; Γ |- t :: σ. Proof. intros E Γ t. generalize dependent Γ. induction t ; auto. - intros. simpl in H. destruct (find_type E Γ t1) eqn:Heq ; inversion H. destruct t0 ; inversion H. destruct (find_type E Γ t2) eqn:Heq2; inversion H. destruct (type_eq_dec t0_1 t0); inversion H. subst. eauto. - intros. simpl in H. destruct (find_type E Γ t0) eqn:Heq; simpl in H; inversion H ; eauto. destruct t2; inversion H; auto. - intros. simpl in H. destruct (find_type E (t0 :: Γ) t1) eqn:Heq; inversion H. auto. - intros. simpl in H. destruct (find_type E Γ t0) eqn:Heq; inversion H. auto. Qed. Definition legal (t : term) := exists E Γ σ, E ; Γ |- t :: σ. Lemma no_self_referential_types : forall σ τ, σ <> <{ σ -> τ }>. Proof. induction σ; intros τ contra; inversion contra. apply (IHσ1 σ2). assumption. Qed. Theorem no_self_application : forall t, ~ (legal <{t · t}>). Proof. intros t [E [Γ [σ H]]]. inversion H. subst. assert (G : <{ σ0 -> σ }> = σ0). { apply uniqueness_of_types with (E := E) (Γ := Γ) (t := t); assumption. } symmetry in G. exact (no_self_referential_types σ0 σ G). Qed. Fixpoint β_reduce (m : term) : term := match m with | var x => var x | free x => free x | <{ (λ α , m) · n }> => <{ [0 := n] m }> | <{ m · n }> => <{ {β_reduce m} · {β_reduce n} }> | <{ λ α, m }> => <{ λ α , {β_reduce m} }> | <{ (λ , m) ∙ n }> => <{ [0 := n]ₜ m }> | <{ m ∙ n }> => <{ {β_reduce m} ∙ n }> | <{ λ , m }> => <{ λ, {β_reduce m} }> end. Reserved Notation "t1 '→β' t2" (at level 50). Inductive β_reduce_r : term -> term -> Prop := | var_β : forall x, var x →β var x | free_β : forall x, free x →β free x | redex1_β : forall α m n, <{ (λ α, m) · n }> →β <{ [0 := n] m }> | redex2_β : forall m n, <{ (λ , m) ∙ n }> →β <{ [0 := n]ₜ m }> | app1_compat_β_l : forall m n m', m →β m' -> <{ m · n }> →β <{ m' · n }> | app1_compat_β_r : forall m n n', n →β n' -> <{ m · n }> →β <{ m · n' }> | app2_compat_β : forall m n m', m →β m' -> <{ m ∙ n }> →β <{ m' ∙ n }> | abs1_compat_β : forall α m m', m →β m' -> <{ λ α, m }> →β <{ λ α, m' }> | abs2_compat_β : forall m m', m →β m' -> <{ λ , m }> →β <{ λ , m' }> where "t1 '→β' t2" := (β_reduce_r t1 t2). Definition β_reduce_r_ext := clos_refl_sym_trans term β_reduce_r. Notation "t1 '↠β' t2" := (β_reduce_r_ext t1 t2) (at level 50). (* Section church_rosser. *) (* Reserved Notation "t1 '↠' t2" (at level 50). *) (* Inductive helper_relation : term -> term -> Prop := *) (* | sym_h : forall t, t ↠ t *) (* | abs1_compat_h : forall α m m', m ↠ m' -> <{ λ α, m }> ↠ <{ λ α, m' }> *) (* | abs2_compat_h : forall m m', m ↠ m' -> <{ λ , m }> ↠ <{ λ , m' }> *) (* | app1_compat_h : forall m m' n n', m ↠ m' -> n ↠ n' -> <{ m · n }> ↠ <{ m' · n' }> *) (* | app2_compat_h : forall m m' n, m ↠ m' -> <{ m ∙ n }> ↠ <{ m' ∙ n }> *) (* | redex1_h : forall α m n, <{ (λ α, m) · n }> ↠ <{ [0 := n] m }> *) (* | redex2_h : forall m n, <{ (λ , m) ∙ n }> ↠ <{ [0 := n]ₜ m }> *) (* where "t1 '↠' t2" := (helper_relation t1 t2). *) (* Lemma substitution_lemma : forall M N L x y, *) (* x < y -> *) (* <{[y := L] ([x := N] M)}> = <{[x := [y := L] N] ([{y + 1} := L] M)}>. *) (* Proof. *) (* induction M ; auto. *) (* - intros N L x y H. *) (* simpl. *) (* destruct (x =? n) eqn:Heq. *) (* + rewrite eqb_eq in Heq. *) (* subst. *) (* destruct (y =? n) eqn:Heq2. *) (* { rewrite eqb_eq in Heq2. symmetry in Heq2. apply lt_neq in H. contradiction. } *) (* apply lt_lt_add_r with (p := 1) in H. *) (* apply lt_neq in H. *) (* apply eqb_neq in H. *) (* rewrite eqb_sym in H. *) (* rewrite H. *) (* simpl. *) (* rewrite eqb_refl. *) (* reflexivity. *) (* + destruct (y =? n) eqn:Heq2. *) (* * simpl. *) (* rewrite Heq2. *) (* * simpl. *) (* rewrite Heq2. *) (* rewrite Heq. *) (* reflexivity. *) (* - intros n p x y H1 H2. *) (* simpl. *) (* rewrite IHm1 ; auto. *) (* rewrite IHm2 ; auto. *) (* - intros n p x y H1 H2. *) (* simpl. *) (* rewrite IHm ; auto. *) (* - intros n p x y H1 H2. *) (* simpl. *) (* rewrite IHm. *) (* + Abort. *) (* Lemma reduct_in_subst : forall m n n' x, *) (* n ↠ n' -> <{ [x := n] m }> ↠ <{ [x := n'] m }>. *) (* Proof. *) (* induction m ; try (intros; simpl; constructor; auto). *) (* intros ℓ ℓ' x H. *) (* simpl. *) (* destruct (x =? n) ; auto using helper_relation. *) (* Qed. *) (* Lemma subst_reduct : forall m m' n n' x, *) (* m ↠ m' -> n ↠ n' -> <{ [x := n] m }> ↠ <{ [x := n'] m' }>. *) (* intros m m' n n' x H. *) (* generalize dependent n. *) (* generalize dependent n'. *) (* generalize dependent x. *) (* induction H ; try (intros; simpl; auto using helper_relation; fail). *) (* - intros x n' n H. *) (* apply reduct_in_subst. *) (* assumption. *) (* - intros x p q H. *) (* simpl. *) (* (* | redex1_h : forall α m n, <{ (λ α, m) · n }> ↠ <{ [0 := n] m }> *) *) (* assert (G : <{ (λ α, [{x + 1} := q] m) · ([x := q] n) }> *) (* ↠ <{ [0 := [x := q] n] ([{x + 1} := q] m) }>). *) (* { apply redex1_h. } *) (* Lemma abs1_char : forall α m n, *) (* <{ λ α, m }> ↠ n -> exists m', n = <{ λ α, m' }> /\ m ↠ m'. *) (* Proof. *) (* intros α m n H1. *) (* inversion H1; subst. *) (* - exists m. *) (* split; auto. *) (* constructor. *) (* - exists m'. *) (* split; auto. *) (* Qed. *) (* Lemma abs2_char : forall m m', *) (* <{ λ, m }> ↠ m' -> exists n, m' = <{λ, n}> /\ m ↠ n. *) (* Proof. *) (* intros m m' H. *) (* inversion H; subst. *) (* - exists m. *) (* split; auto; try constructor. *) (* - exists m'0. *) (* split; auto; try constructor. *) (* Qed. *) (* Lemma app1_char : forall m n l, *) (* <{ m · n }> ↠ l *) (* -> (exists m' n', l = <{ m' · n' }> /\ m ↠ m' /\ n ↠ n') \/ *) (* (exists α p, m = <{ λ α, p }> /\ l = <{[0 := n] p}>). *) (* Proof. *) (* intros m n l H. *) (* inversion H ; subst ; auto. *) (* - left. *) (* exists m, n. *) (* split ; auto. *) (* split ; constructor. *) (* - left. *) (* exists m', n'. *) (* auto. *) (* - right. *) (* exists α, m0. *) (* auto. *) (* Qed. *) (* Lemma helper_diamond : forall m m1 m2, *) (* m ↠ m1 -> m ↠ m2 -> exists n, m1 ↠ n /\ m2 ↠ n. *) (* Proof. *) (* intros m m1 m2 H1. *) (* generalize dependent m2. *) (* induction H1. *) (* - intros m2 H2. *) (* exists m2. *) (* split ; try constructor; auto. *) (* - intros m2 H2. *) (* apply abs1_char in H2 as [t [G1 G2]]. *) (* subst. *) (* apply (IHhelper_relation t) in G2 as [n [F1 F2]]. *) (* exists <{λ α, n}>. *) (* split; constructor; assumption. *) (* - intros m2 H2. *) (* apply abs2_char in H2 as [n [G1 G2]]. *) (* subst. *) (* apply (IHhelper_relation n) in G2 as [n' [F1 F2]]. *) (* exists <{λ, n'}>. *) (* split; constructor; assumption. *) (* - intros m2 H2. *) (* apply app1_char in H2 as [[p [q [G1 [G2 G3]]]] | H2]; subst. *) (* + apply IHhelper_relation1 in G2 as [p' [Hp1 Hp2]]. *) (* apply IHhelper_relation2 in G3 as [q' [Hq1 Hq2]]. *) (* exists <{p' · q'}>. *) (* split; auto using helper_relation. *) (* + destruct H2 as [α [p [G1 G2]]]. *) (* subst. *) (* apply abs1_char in H1_ as [l [Hm Hl]]. *) (* subst. *) (* exists <{[0 := n'] l}>. *) (* split. *) (* * constructor. *) (* * *) (* (* apply IHhelper_relation1 in H1_. *) *) (* (* apply IHhelper_relation2 in H1_0. *) *) (* End church_rosser. *) Reserved Notation "t1 ≡ t2" (at level 50). Inductive β_equiv : term -> term -> Prop := | reduce : forall t1 t2, β_reduce t1 = t2 -> t1 ≡ t2 | refl_β : forall t, t ≡ t | sym_β : forall t1 t2, t1 ≡ t2 -> t2 ≡ t1 | trans_β : forall t1 t2 t3, t1 ≡ t2 -> t2 ≡ t3 -> t1 ≡ t3 where "t1 ≡ t2" := (β_equiv t1 t2). Hint Constructors β_equiv : core. Instance β_equiv_equiv : Equivalence β_equiv. Proof. constructor; eauto. Qed. (* Proving these requires proving CR *) Instance β_equiv_app1_l {t : term} : Proper (β_equiv ==> β_equiv) (fun s => app1 s t). Proof. Abort. Instance β_equiv_app2 {σ : type} : Proper (β_equiv ==> β_equiv) (fun t => app2 t σ). Proof. Abort. Instance β_equiv_abs2 : Proper (β_equiv ==> β_equiv) abs2. Proof. intros x y H. induction H; auto. - constructor. simpl. rewrite H. reflexivity. - rewrite IHβ_equiv1. rewrite IHβ_equiv2. reflexivity. Qed. Example test t1 t2 : t1 ≡ t2 -> abs2 t1 ≡ abs2 t2. Proof. intros H. rewrite H. reflexivity. Qed. Ltac simple_compute := repeat (eapply trans_β; try (apply reduce; reflexivity)). Section book_examples. Let α := tyfree 0. Let β := tyfree 1. Let γ := tyfree 2. Example ex3_2 : [] ; [] |- λ , λ , λ , λ <2> -> <1>, λ <1> -> <0>, λ <2>, 1 · (2 · 0) :: Π Π Π (<2> -> <1>) -> (<1> -> <0>) -> <2> -> <0>. Proof using Type. repeat econstructor. Qed. Let nat' := tyfree 3. Let bool' := tyfree 4. Example ex3_4 : [] ; [] |- (λ , λ , λ <1> -> <1>, λ <1> -> <0>, λ <1>, 1 · (2 · (2 · 0))) ∙ nat' ∙ bool' :: ((nat' -> nat') -> (nat' -> bool') -> nat' -> bool'). Proof using Type. apply app_rule2 with (a := <{(nat' -> nat') -> (nat' -> <0>) -> nat' -> <0>}>). apply app_rule2 with (a := <{Π (<1> -> <1>) -> (<1> -> <0>) -> <1> -> <0>}>). repeat econstructor. Qed. Example ex3_5 : forall σ, [(0, <{Π <0>}>)] ; [] |- {free 0} ∙ σ :: σ. Proof using Type. intros. apply app_rule2 with (a := <{<0>}>). auto. Qed. Example ex3_6a : [] ; [] |- λ , λ , λ nat' -> <1>, λ <1> -> nat' -> <0> , λ nat', 1 · (2 · 0) · 0 :: Π Π (nat' -> <1>) -> (<1> -> nat' -> <0>) -> nat' -> <0>. Proof using Type. repeat econstructor. Qed. Example ex3_6b : [] ; [] |- λ, λ ((α -> γ) -> <0>), λ (α -> β), λ (β -> γ), 2 · (λ α, 1 · (2 · 0)) :: Π ((α -> γ) -> <0>) -> (α -> β) -> (β -> γ) -> <0>. Proof using Type. repeat econstructor. Qed. End book_examples. Section numbers_bools. Definition nat' := <{Π (<0> -> <0>) -> <0> -> <0>}>. Definition zero := <{λ , λ <0> -> <0>, λ <0>, 0}>. Definition one := <{λ , λ <0> -> <0>, λ <0>, 1 · 0}>. Definition two := <{λ , λ <0> -> <0>, λ <0>, 1 · (1 · 0)}>. Definition succ := <{λ {nat'}, λ , λ <0> -> <0>, λ <0>, 1 · (2 ∙ <0> · 1 · 0)}>. Definition add := <{λ {nat'}, λ {nat'}, λ , λ <0> -> <0>, λ <0>, 3 ∙ <0> · 1 · (2 ∙ <0> · 1 · 0) }>. Example zero_nat : [] ; [] |- zero :: nat'. Proof using Type. repeat econstructor. Qed. Example succ_nat_nat : [] ; [] |- succ :: (nat' -> nat'). Proof using Type. unfold nat'. repeat econstructor. apply app_rule2 with (a := <{(<0> -> <0>) -> <0> -> <0>}>). repeat econstructor. Qed. Example succ_zero_one : app1 succ zero ≡ one. Proof using Type. simple_compute. Qed. Example succ_one_two : app1 succ one ≡ two. Proof using Type. simple_compute. Qed. Example one_p_one_two : <{{add} · {one} · {one}}> ≡ two. Proof using Type. simple_compute. Qed. Definition bool' := <{Π <0> -> <0> -> <0>}>. Definition true := <{λ , λ <0>, λ <0>, 1}>. Definition false := <{λ , λ <0>, λ <0>, 0}>. Definition neg := <{λ {bool'}, λ , (0 ∙ <0>) · ({false} ∙ <0>) · ((true) ∙ <0>)}>. Example neg_true_false : app1 neg true ≡ false. Proof using Type. simple_compute. Qed. Example neg_false_true : app1 neg false ≡ true. Proof using Type. simple_compute. Qed. Definition M := <{ λ {bool'}, λ {bool'}, λ , λ <0>, λ <0>, 3 ∙ <0> · (2 ∙ <0> · 1 · 0) · (2 ∙ <0> · 0 · 0) }>. (* M is and *) Example M_true_true : <{{M} · {true} · {true}}> ≡ true. Proof using Type. simple_compute. Qed. Example M_true_false : <{{M} · {true} · {false}}> ≡ false. Proof using Type. simple_compute. Qed. Example M_false_true : <{{M} · {false} · {true}}> ≡ false. Proof using Type. simple_compute. Qed. Example M_false_false : <{{M} · {false} · {false}}> ≡ false. Proof using Type. simple_compute. Qed. Definition or := <{ λ {bool'}, λ {bool'}, 1 ∙ {bool'} · {true} · 0 }>. Example or_true_true : <{{or} · {true} · {true}}> ≡ true. Proof using Type. simple_compute. Qed. Example or_true_false : <{{or} · {true} · {false}}> ≡ true. Proof using Type. simple_compute. Qed. Example or_false_true : <{{or} · {false} · {true}}> ≡ true. Proof using Type. simple_compute. Qed. Example or_false_false : <{{or} · {false} · {false}}> ≡ false. Proof using Type. simple_compute. Qed. Definition xor := <{ λ {bool'}, λ {bool'}, 1 ∙ {bool'} · ({neg} · 0) · 0 }>. Example xor_true_true : <{{xor} · {true} · {true}}> ≡ false. Proof using Type. simple_compute. Qed. Example xor_true_false : <{{xor} · {true} · {false}}> ≡ true. Proof using Type. simple_compute. Qed. Example xor_false_true : <{{xor} · {false} · {true}}> ≡ true. Proof using Type. simple_compute. Qed. Example xor_false_false : <{{xor} · {false} · {false}}> ≡ false. Proof using Type. simple_compute. Qed. Definition impl := <{ λ {bool'}, λ {bool'}, 1 ∙ {bool'} · 0 · {true} }>. Example impl_true_true : <{{impl} · {true} · {true}}> ≡ true. Proof using Type. simple_compute. Qed. Example impl_true_false : <{{impl} · {true} · {false}}> ≡ false. Proof using Type. simple_compute. Qed. Example impl_false_true : <{{impl} · {false} · {true}}> ≡ true. Proof using Type. simple_compute. Qed. Example impl_false_false : <{{impl} · {false} · {false}}> ≡ true. Proof using Type. simple_compute. Qed. Definition is_zero := <{ λ {nat'}, 0 ∙ {bool'} · (λ {bool'}, {false}) · {true} }>. Example zero_is_zero : app1 is_zero zero ≡ true. Proof using Type. simple_compute. Qed. Example one_not_zero : app1 is_zero one ≡ false. Proof using Type. simple_compute. Qed. End numbers_bools.