2024-11-20 07:37:57 -08:00
|
|
|
-- --------------------------------------------------------------------------------------------------------------
|
|
|
|
|
-- | BASIC LOGIC |
|
|
|
|
|
-- --------------------------------------------------------------------------------------------------------------
|
|
|
|
|
|
2024-11-22 10:36:51 -08:00
|
|
|
@include logic.pg
|
2024-11-20 07:37:57 -08:00
|
|
|
|
|
|
|
|
-- --------------------------------------------------------------------------------------------------------------
|
|
|
|
|
-- | BASIC DEFINITIONS |
|
|
|
|
|
-- --------------------------------------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
-- note we leave off the type ascriptions for most of these, as the type isn't
|
|
|
|
|
-- very interesting
|
|
|
|
|
-- I'd always strongly recommend including the type ascriptions for theorems
|
|
|
|
|
|
|
|
|
|
-- a unary operation on a set `A` is a function `A -> A`
|
|
|
|
|
unop (A : *) := A -> A;
|
|
|
|
|
|
|
|
|
|
-- a binary operation on a set `A` is a function `A -> A -> A`
|
|
|
|
|
binop (A : *) := A -> A -> A;
|
|
|
|
|
|
|
|
|
|
-- a binary operation is associative if ...
|
|
|
|
|
assoc (A : *) (op : binop A) :=
|
2024-11-22 11:52:30 -08:00
|
|
|
forall (a b c : A), eq A (op a (op b c)) (op (op a b) c);
|
2024-11-20 07:37:57 -08:00
|
|
|
|
|
|
|
|
-- an element `e : A` is a left identity with respect to binop `op` if `∀ a, e * a = a`
|
|
|
|
|
id_l (A : *) (op : binop A) (e : A) :=
|
|
|
|
|
forall (a : A), eq A (op e a) a;
|
|
|
|
|
|
|
|
|
|
-- likewise for right identity
|
|
|
|
|
id_r (A : *) (op : binop A) (e : A) :=
|
|
|
|
|
forall (a : A), eq A (op a e) a;
|
|
|
|
|
|
|
|
|
|
-- an element is an identity element if it is both a left and right identity
|
|
|
|
|
id (A : *) (op : binop A) (e : A) := and (id_l A op e) (id_r A op e);
|
|
|
|
|
|
|
|
|
|
-- b is a left inverse for a if `b * a = e`
|
|
|
|
|
-- NOTE: we don't require `e` to be an identity in this definition.
|
|
|
|
|
-- this definition is purely for convenience's sake
|
|
|
|
|
inv_l (A : *) (op : binop A) (e : A) (a b : A) := eq A (op b a) e;
|
|
|
|
|
|
|
|
|
|
-- likewise for right inverse
|
|
|
|
|
inv_r (A : *) (op : binop A) (e : A) (a b : A) := eq A (op a b) e;
|
|
|
|
|
|
|
|
|
|
-- and full-on inverse
|
|
|
|
|
inv (A : *) (op : binop A) (e : A) (a b : A) := and (inv_l A op e a b) (inv_r A op e a b);
|
|
|
|
|
|
|
|
|
|
-- --------------------------------------------------------------------------------------------------------------
|
|
|
|
|
-- | ALGEBRAIC STRUCTURES |
|
|
|
|
|
-- --------------------------------------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
-- a set `S` with binary operation `op` is a semigroup if its operation is associative
|
|
|
|
|
semigroup (S : *) (op : binop S) : * := assoc S op;
|
|
|
|
|
|
|
|
|
|
-- a set `M` with binary operation `op` and element `e` is a monoid
|
|
|
|
|
monoid (M : *) (op : binop M) (e : M) : * :=
|
|
|
|
|
and (semigroup M op) (id M op e);
|
|
|
|
|
|
|
|
|
|
-- some "getters" for `monoid` so we don't have to do a bunch of very verbose
|
|
|
|
|
-- and-eliminations every time we want to use something
|
|
|
|
|
id_lm (M : *) (op : binop M) (e : M) (Hmonoid : monoid M op e) : id_l M op e :=
|
|
|
|
|
and_elim_l (id_l M op e) (id_r M op e)
|
|
|
|
|
(and_elim_r (semigroup M op) (id M op e) Hmonoid);
|
|
|
|
|
|
|
|
|
|
id_rm (M : *) (op : binop M) (e : M) (Hmonoid : monoid M op e) : id_r M op e :=
|
|
|
|
|
and_elim_r (id_l M op e) (id_r M op e)
|
|
|
|
|
(and_elim_r (semigroup M op) (id M op e) Hmonoid);
|
|
|
|
|
|
2024-11-22 11:52:30 -08:00
|
|
|
assoc_m (M : *) (op : binop M) (e : M) (Hmonoid : monoid M op e) : assoc M op :=
|
|
|
|
|
and_elim_l (semigroup M op) (id M op e) Hmonoid;
|
|
|
|
|
|
2024-11-20 07:37:57 -08:00
|
|
|
-- now we can prove that, for any monoid, if `a` is a left identity, then it
|
|
|
|
|
-- must be "the" identity
|
|
|
|
|
monoid_id_l_implies_identity
|
|
|
|
|
(M : *) (op : binop M) (e : M) (Hmonoid : monoid M op e)
|
|
|
|
|
(a : M) (H : id_l M op a) : eq M a e :=
|
|
|
|
|
-- WTS a = a * e = e
|
|
|
|
|
-- we can use `eq_trans` to glue proofs of `a = a * e` and `a * e = e` together
|
|
|
|
|
eq_trans M a (op a e) e
|
|
|
|
|
|
|
|
|
|
-- first, `a = a * e`, but we'll use `eq_sym` to flip it around
|
|
|
|
|
(eq_sym M (op a e) a
|
|
|
|
|
-- now the goal is to show `a * e = a`, which follows immediately from `id_r`
|
|
|
|
|
(id_rm M op e Hmonoid a))
|
|
|
|
|
|
|
|
|
|
-- now we need to show that `a * e = e`, but this immediately follows from `H`
|
|
|
|
|
(H e);
|
|
|
|
|
|
|
|
|
|
-- the analogous result for right identities
|
|
|
|
|
monoid_id_r_implies_identity
|
|
|
|
|
(M : *) (op : binop M) (e : M) (Hmonoid : monoid M op e)
|
|
|
|
|
(a : M) (H : id_r M op a) : eq M a e :=
|
|
|
|
|
-- this time, we'll show `a = e * a = e`
|
|
|
|
|
eq_trans M a (op e a) e
|
|
|
|
|
|
|
|
|
|
-- first, `a = e * a`
|
|
|
|
|
(eq_sym M (op e a) a
|
|
|
|
|
-- this time, it immediately follows from `id_l`
|
|
|
|
|
(id_lm M op e Hmonoid a))
|
|
|
|
|
|
|
|
|
|
-- and `e * a = e`
|
|
|
|
|
(H e);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-- groups are just monoids with inverses
|
2024-11-22 11:52:30 -08:00
|
|
|
has_inverses (G : *) (op : binop G) (e : G) (i : unop G) : * :=
|
|
|
|
|
forall (a : G), inv G op e a (i a);
|
|
|
|
|
|
2024-11-20 07:37:57 -08:00
|
|
|
group (G : *) (op : binop G) (e : G) (i : unop G) : * :=
|
|
|
|
|
and (monoid G op e)
|
2024-11-22 11:52:30 -08:00
|
|
|
(has_inverses G op e i);
|
|
|
|
|
|
|
|
|
|
-- more "getters"
|
|
|
|
|
monoid_g (G : *) (op : binop G) (e : G) (i : unop G) (Hgroup : group G op e i) : monoid G op e :=
|
|
|
|
|
and_elim_l (monoid G op e) (has_inverses G op e i) Hgroup;
|
|
|
|
|
|
|
|
|
|
assoc_g (G : *) (op : binop G) (e : G) (i : unop G) (Hgroup : group G op e i) : assoc G op :=
|
|
|
|
|
assoc_m G op e (monoid_g G op e i Hgroup);
|
|
|
|
|
|
|
|
|
|
id_lg (G : *) (op : binop G) (e : G) (i : unop G) (Hgroup : group G op e i) : id_l G op e :=
|
|
|
|
|
id_lm G op e (and_elim_l (monoid G op e) (has_inverses G op e i) Hgroup);
|
|
|
|
|
|
|
|
|
|
id_rg (G : *) (op : binop G) (e : G) (i : unop G) (Hgroup : group G op e i) : id_r G op e :=
|
|
|
|
|
id_rm G op e (and_elim_l (monoid G op e) (has_inverses G op e i) Hgroup);
|
|
|
|
|
|
|
|
|
|
inv_g (G : *) (op : binop G) (e : G) (i : unop G) (Hgroup : group G op e i) : forall (a : G), inv G op e a (i a) :=
|
|
|
|
|
and_elim_r (monoid G op e) (has_inverses G op e i) Hgroup;
|
|
|
|
|
|
|
|
|
|
inv_lg (G : *) (op : binop G) (e : G) (i : unop G) (Hgroup : group G op e i) (a : G) : inv_l G op e a (i a) :=
|
|
|
|
|
and_elim_l (inv_l G op e a (i a)) (inv_r G op e a (i a)) (inv_g G op e i Hgroup a);
|
|
|
|
|
|
|
|
|
|
inv_rg (G : *) (op : binop G) (e : G) (i : unop G) (Hgroup : group G op e i) (a : G) : inv_r G op e a (i a) :=
|
|
|
|
|
and_elim_r (inv_l G op e a (i a)) (inv_r G op e a (i a)) (inv_g G op e i Hgroup a);
|
|
|
|
|
|
|
|
|
|
left_inv_unique (G : *) (op : binop G) (e : G) (i : unop G) (Hgroup : group G op e i) (a b : G) (h : inv_l G op e a b) : eq G b (i a) :=
|
|
|
|
|
-- b = b * e
|
|
|
|
|
-- = b * (a * a^-1)
|
|
|
|
|
-- = (b * a) * a^-1
|
|
|
|
|
-- = e * a^-1
|
|
|
|
|
-- = a^-1
|
|
|
|
|
eq_trans G b (op b e) (i a)
|
|
|
|
|
-- b = b * e
|
|
|
|
|
(eq_sym G (op b e) b (id_rg G op e i Hgroup b))
|
|
|
|
|
-- b * e = a^-1
|
|
|
|
|
(eq_trans G (op b e) (op b (op a (i a))) (i a)
|
|
|
|
|
--b * e = b * (a * a^-1)
|
|
|
|
|
(eq_cong G G e (op a (i a)) (op b)
|
|
|
|
|
-- e = a * a^-1
|
|
|
|
|
(eq_sym G (op a (i a)) e (inv_rg G op e i Hgroup a)))
|
|
|
|
|
-- b * (a * a^-1) = a^-1
|
|
|
|
|
(eq_trans G (op b (op a (i a))) (op (op b a) (i a)) (i a)
|
|
|
|
|
-- b * (a * a^-1) = (b * a) * a^-1
|
|
|
|
|
(assoc_g G op e i Hgroup b a (i a))
|
|
|
|
|
-- (b * a) * a^-1 = a^-1
|
|
|
|
|
(eq_trans G (op (op b a) (i a)) (op e (i a)) (i a)
|
|
|
|
|
-- (b * a) * a^-1 = e * a^-1
|
|
|
|
|
(eq_cong G G (op b a) e (fun (x : G) => op x (i a)) h)
|
|
|
|
|
-- e * a^-1 = a^-1
|
|
|
|
|
(id_lg G op e i Hgroup (i a)))));
|
|
|
|
|
|