some algebra

This commit is contained in:
William Ball 2024-12-13 22:45:37 -08:00
parent cf26b7c9ec
commit dbf4b88738
3 changed files with 111 additions and 56 deletions

View file

@ -28,7 +28,7 @@ section BasicDefinitions
infixl 20 *;
-- it is associative if ...
def assoc := forall (a b c : A), eq A (a * (b * c)) ((a * b) * c);
def assoc := forall (a b c : A), eq A (a * (b * c)) (a * b * c);
-- fix some element `e`
variable (e : A);
@ -59,11 +59,17 @@ end BasicDefinitions
-- | ALGEBRAIC STRUCTURES |
-- --------------------------------------------------------------------------------------------------------------
-- a set `S` with binary operation `op` is a semigroup if its operation is associative
def semigroup (S : ★) (op : binop S) : ★ := assoc S op;
-- NOTE: I want to define opposite semigroups, monoids, groups, etc. and prove
-- that they are still semigroups, monoids, etc. in order to get dual results
-- like `cancel_r` after having proved `cancel_l` for free. Unfortunately, this
-- is a bit awkward in perga, at least for now.
section Semigroup
variable (S : ★) (* : binop S);
def semigroup := assoc S (*);
end Semigroup
section Monoid
-- Let `M` be a set with binary operation `*` and element `e`.
variable (M : ★) (* : binop M) (e : M);
infixl 50 *;
@ -113,7 +119,6 @@ section Monoid
-- and `e * a = e`
(H e);
end Monoid
section Group
@ -140,71 +145,56 @@ section Group
def inv_lg (a : G) : left_inverse a (i a) := and_elim_l (inv_l G (*) e a (i a)) (inv_r G (*) e a (i a)) (inv_g a);
def inv_rg (a : G) : right_inverse a (i a) := and_elim_r (inv_l G (*) e a (i a)) (inv_r G (*) e a (i a)) (inv_g a);
def = := eq G;
infixl 10 =;
-- An interesting theorem: left inverses are unique, i.e. if b * a = e, then b = a^-1
def left_inv_unique (a b : G) (h : left_inverse a b) : eq G b (i a) :=
def left_inv_unique (a b : G) (h : left_inverse a b) : b = (i a) :=
-- b = b * e
-- = b * (a * a^-1)
-- = (b * a) * a^-1
-- = e * a^-1
-- = a^-1
eq_trans G b (b * e) (i a)
-- b = b * e
(eq_sym G (b * e) b (id_rg b))
-- b * e = a^-1
(eq_trans G (b * e) (b * (a * i a)) (i a)
--b * e = b * (a * a^-1)
(eq_cong G G e (a * i a) ((*) b)
-- e = a * a^-1
(eq_sym G (a * i a) e (inv_rg a)))
-- b * (a * a^-1) = a^-1
(eq_trans G (b * (a * i a)) (b * a * i a) (i a)
-- b * (a * a^-1) = (b * a) * a^-1
(assoc_g b a (i a))
-- (b * a) * a^-1 = a^-1
(eq_trans G (b * a * i a) (e * i a) (i a)
-- (b * a) * a^-1 = e * a^-1
(eq_cong G G (b * a) e (fun (x : G) => x * i a) h)
-- e * a^-1 = a^-1
(id_lg (i a)))));
-- And so are right inverses
def right_inv_unique (a b : G) (h : right_inverse a b) : eq G b (i a) :=
def right_inv_unique (a b : G) (h : right_inverse a b) : b = (i a) :=
-- b = e * b
-- = (a^-1 * a) * b
-- = a^-1 * (a * b)
-- = a^-1 * e
-- = a^-1
eq_trans G b (e * b) (i a)
-- b = e * b
(eq_sym G (e * b) b (id_lg b))
-- e * b = a^-1
(eq_trans G (e * b) (i a * a * b) (i a)
-- e * b = (a^-1 * a) * b
(eq_cong G G e (i a * a) (fun (x : G) => x * b)
-- e = (a^-1 * a)
(eq_sym G (i a * a) e (inv_lg a)))
-- (a^-1 * a) * b = a^-1
(eq_trans G (i a * a * b) (i a * (a * b)) (i a)
-- (a^-1 * a) * b = a^-1 * (a * b)
(eq_sym G (i a * (a * b)) (i a * a * b) (assoc_g (i a) a b))
-- a^-1 * (a * b) = a^-1
(eq_trans G (i a * (a * b)) (i a * e) (i a)
-- a^-1 * (a * b) = a^-1 * e
(eq_cong G G (a * b) e ((*) (i a)) h)
-- a^-1 * e = a^-1
(id_rg (i a)))));
-- (a^-1)^-1 = a
def inverse_involutive (a : G) : i (i a) = a :=
eq_sym G a (i (i a)) (right_inv_unique (i a) a (inv_lg a));
-- the classic shoes and socks theorem, namely that (a * b)^-1 = b^-1 * a^-1
def shoes_and_socks (a b : G) : eq G (i (a * b)) (i b * i a) :=
def shoes_and_socks (a b : G) : i (a * b) = i b * i a :=
eq_sym G (i b * i a) (i (a * b))
(right_inv_unique (a * b) (i b * i a)
-- WTS: (a * b) * (b^-1 * a^-1) = e
(let
-- helper function to prove that x * a^-1 = y * a^-1 given x = y
(under_ai (x y : G) (h : eq G x y) := eq_cong G G x y (fun (z : G) => z * (i a)) h)
(under_ai (x y : G) (h : x = y) := eq_cong G G x y (fun (z : G) => z * (i a)) h)
in
-- (a * b) * (b^-1 * a^-1) = ((a * b) * b^-1) * a^-1
-- = (a * (b * b^-1)) * a^-1
@ -212,25 +202,90 @@ section Group
-- = a * a^-1
-- = e
eq_trans G (a * b * (i b * i a)) (a * b * i b * i a) e
-- (a * b) * (b^-1 * a^-1) = ((a * b) * b^-1) * a^-1
(assoc_g (a * b) (i b) (i a))
-- ((a * b) * b^-1) * a^-1 = e
(eq_trans G (a * b * i b * i a) (a * (b * i b) * i a) e
-- ((a * b) * b^-1) * a^-1 = (a * (b * b^-1)) * a^-1
(under_ai (a * b * i b) (a * (b * i b)) (eq_sym G (a * (b * i b)) (a * b * i b) (assoc_g a b (i b))))
-- (a * (b * b^-1)) * a^-1 = e
(eq_trans G (a * (b * i b) * i a) (a * e * i a) e
-- (a * (b * b^-1)) * a^-1 = (a * e) * a^-1
(eq_cong G G (b * i b) e (fun (x : G) => (a * x * i a)) (inv_rg b))
-- (a * e) * a^-1 = e
(eq_trans G (a * e * i a) (a * i a) e
-- (a * e) * a^-1 = a * a^-1
(under_ai (a * e) a (id_rg a))
-- a * a^-1 = e
(inv_rg a))))
end));
def cancel_l (a b c : G) : a * b = a * c → b = c :=
fun (h : a * b = a * c) =>
eq_trans G b (e * b) c
(eq_sym G (e * b) b (id_lg b))
(eq_trans G (e * b) (i a * a * b) c
(eq_cong G G e (i a * a) ([x : G] x * b)
(eq_sym G (i a * a) e (inv_lg a)))
(eq_trans G (i a * a * b) (i a * (a * b)) c
(eq_sym G (i a * (a * b)) (i a * a * b) (assoc_g (i a) a b))
(eq_trans G (i a * (a * b)) (i a * (a * c)) c
(eq_cong G G (a * b) (a * c) ((*) (i a)) h)
(eq_trans G (i a * (a * c)) (i a * a * c) c
(assoc_g (i a) a c)
(eq_trans G (i a * a * c) (e * c) c
(eq_cong G G (i a * a) e ([x : G] x * c) (inv_lg a))
(id_lg c))))));
def cancel_r (a b c : G) : b * a = c * a → b = c :=
fun (h : b * a = c * a) =>
eq_trans G b (b * e) c
(eq_sym G (b * e) b (id_rg b))
(eq_trans G (b * e) (b * (a * i a)) c
(eq_cong G G e (a * i a) ((*) b)
(eq_sym G (a * i a) e (inv_rg a)))
(eq_trans G (b * (a * i a)) (b * a * i a) c
(assoc_g b a (i a))
(eq_trans G (b * a * i a) (c * a * i a) c
(eq_cong G G (b * a) (c * a) ([x : G] x * i a) h)
(eq_trans G (c * a * i a) (c * (a * i a)) c
(eq_sym G (c * (a * i a)) (c * a * i a) (assoc_g c a (i a)))
(eq_trans G (c * (a * i a)) (c * e) c
(eq_cong G G (a * i a) e ((*) c) (inv_rg a))
(id_rg c))))));
def abelian : ★ := forall (a b : G), a * b = b * a;
def left_right_cancel : (forall (x y z : G), x * y = z * x → y = z) → abelian :=
fun (h : forall (x y z : G), x * y = z * x → y = z) (a b : G) =>
h (i a) (a * b) (b * a)
(eq_trans G (i a * (a * b)) (i a * a * b) (b * a * i a)
(assoc_g (i a) a b)
(eq_trans G (i a * a * b) (e * b) (b * a * i a)
(eq_cong G G (i a * a) e ([x : G] x * b) (inv_lg a))
(eq_trans G (e * b) b (b * a * i a)
(id_lg b)
(eq_trans G b (b * e) (b * a * i a)
(eq_sym G (b * e) b (id_rg b))
(eq_trans G (b * e) (b * (a * i a)) (b * a * i a)
(eq_cong G G e (a * i a) ((*) b) (eq_sym G (a * i a) e (inv_rg a)))
(assoc_g b a (i a)))))));
def inv_distrib_abelian : (forall (a b : G), i (a * b) = i a * i b) → abelian :=
fun (h : forall (a b : G), i (a * b) = i a * i b) (a b : G) =>
eq_trans G (a * b) (i (i a) * b) (b * a)
(eq_cong G G a (i (i a)) ([x : G] x * b) (eq_sym G (i (i a)) a (inverse_involutive a)))
(eq_trans G (i (i a) * b) (i (i a) * i (i b)) (b * a)
(eq_cong G G b (i (i b)) ((*) (i (i a))) (eq_sym G (i (i b)) b (inverse_involutive b)))
(eq_trans G (i (i a) * i (i b)) (i (i b * i a)) (b * a)
(eq_sym G (i (i b * i a)) (i (i a) * i (i b)) (shoes_and_socks (i b) (i a)))
(eq_trans G (i (i b * i a)) (i (i b) * i (i a)) (b * a)
(h (i b) (i a))
(eq_trans G (i (i b) * i (i a)) (b * i (i a)) (b * a)
(eq_cong G G (i (i b)) b ([x : G] x * i (i a)) (inverse_involutive b))
(eq_cong G G (i (i a)) a ((*) b) (inverse_involutive a))))));
def order_two (a : G) : a * a = e → a = i a := right_inv_unique a a;
def all_order_two_abelian : (forall (a : G), a * a = e) → abelian :=
fun (h : forall (a : G), a * a = e) =>
inv_distrib_abelian (fun (a b : G) =>
(eq_trans G (i (a * b)) (a * b) (i a * i b)
(eq_sym G (a * b) (i (a * b)) (order_two (a * b) (h (a * b))))
(eq_trans G (a * b) (a * i b) (i a * i b)
(eq_cong G G b (i b) ((*) a) (order_two b (h b)))
(eq_cong G G a (i a) ([x : G] x * i b) (order_two a (h a))))));
end Group

View file

@ -168,7 +168,7 @@ prettyExpr k expr = case expr of
Var s _ -> pretty s
Free s -> pretty s
Axiom s -> pretty s
Star -> "*"
Star -> ""
Level i
| i == 0 -> ""
| otherwise -> "" <> printLevel i

View file

@ -66,18 +66,18 @@ pSymbol = lexeme $ takeWhile1P (Just "symbol") (`elem` symbols)
pVar :: Parser IRExpr
pVar = label "variable" $ lexeme $ Var <$> pIdentifier
pParamGroup :: Parser Text -> Parser [Param]
pParamGroup ident = lexeme $ label "parameter group" $ parens $ do
idents <- some ident
pParamGroup :: Parser [Param]
pParamGroup = lexeme $ label "parameter group" $ parens $ do
idents <- some $ pIdentifier <|> pSymbol
symbol ":"
ty <- pIRExpr
pure $ map (,ty) idents
pSomeParams :: Parser Text -> Parser [Param]
pSomeParams ident = lexeme $ concat <$> some (pParamGroup ident)
pSomeParams :: Parser [Param]
pSomeParams = lexeme $ concat <$> some pParamGroup
pManyParams :: Parser Text -> Parser [Param]
pManyParams ident = lexeme $ concat <$> many (pParamGroup ident)
pManyParams :: Parser [Param]
pManyParams = lexeme $ concat <$> many pParamGroup
mkAbs :: (Text, IRExpr) -> IRExpr -> IRExpr
mkAbs (param, typ) = Abs param typ
@ -88,7 +88,7 @@ mkPi (param, typ) = Pi param typ
pLAbs :: Parser IRExpr
pLAbs = lexeme $ label "λ-abstraction" $ do
_ <- pKeyword "fun" <|> symbol "λ"
params <- pSomeParams pIdentifier
params <- pSomeParams
_ <- symbol "=>" <|> symbol ""
body <- pIRExpr
pure $ foldr mkAbs body params
@ -106,7 +106,7 @@ pALAbs = lexeme $ label "λ-abstraction" $ do
pPAbs :: Parser IRExpr
pPAbs = lexeme $ label "Π-abstraction" $ do
_ <- pKeyword "forall" <|> symbol "" <|> symbol ""
params <- pSomeParams pIdentifier
params <- pSomeParams
symbol ","
body <- pIRExpr
pure $ foldr mkPi body params
@ -115,7 +115,7 @@ pBinding :: Parser (Text, Maybe IRExpr, IRExpr)
pBinding = lexeme $ label "binding" $ do
symbol "("
ident <- pIdentifier
params <- pManyParams pIdentifier
params <- pManyParams
ascription <- optional pAscription
symbol ":="
value <- pIRExpr
@ -212,7 +212,7 @@ pAxiom :: Parser IRDef
pAxiom = lexeme $ label "axiom" $ do
pKeyword "axiom"
ident <- pIdentifier
params <- pManyParams (pIdentifier <|> pSymbol)
params <- pManyParams
ascription <- fmap (flip (foldr mkPi) params) pAscription
symbol ";"
pure $ Axiom ident ascription
@ -220,7 +220,7 @@ pAxiom = lexeme $ label "axiom" $ do
pVariable :: Parser [IRSectionDef]
pVariable = lexeme $ label "variable declaration" $ do
pKeyword "variable" <|> pKeyword "hypothesis"
vars <- pManyParams (pIdentifier <|> pSymbol)
vars <- pManyParams
symbol ";"
pure $ uncurry Variable <$> vars
@ -228,7 +228,7 @@ pDef :: Parser IRDef
pDef = lexeme $ label "definition" $ do
pKeyword "def"
ident <- pIdentifier <|> pSymbol
params <- pManyParams pIdentifier
params <- pManyParams
ascription <- fmap (flip (foldr mkPi) params) <$> optional pAscription
symbol ":="
body <- pIRExpr