type-theory-and-formal-proofs/lambda.v

731 lines
22 KiB
Coq
Raw Permalink Normal View History

2024-07-15 07:49:33 -07:00
Require Import PeanoNat.
Import Nat.
Require Import Lists.List.
Import ListNotations.
2024-08-28 11:47:23 -07:00
Require Import Setoid.
Require Import Relation_Definitions.
Require Import Morphisms.
Require Import Relations.Relation_Operators.
2024-07-15 07:49:33 -07:00
Inductive type : Set :=
| tyvar : nat -> type
2024-08-28 11:47:23 -07:00
| tyfree : nat -> type
| arrow : type -> type -> type
| pi : type -> type.
2024-07-15 07:49:33 -07:00
Scheme Equality for type.
Inductive term : Set :=
| var : nat -> term
| free : nat -> term
2024-08-28 11:47:23 -07:00
| app1 : term -> term -> term
| app2 : term -> type -> term
| abs1 : type -> term -> term
| abs2 : term -> term.
2024-07-15 07:49:33 -07:00
Declare Custom Entry lambda.
Notation "<{ e }>" := e (e custom lambda at level 99).
Notation "( x )" := x (in custom lambda, x at level 99).
2024-08-28 11:47:23 -07:00
Notation "< x >" := (tyvar x) (in custom lambda, x at level 99).
2024-07-15 07:49:33 -07:00
Notation "{ x }" := x (x at level 99).
Notation "x" := x (in custom lambda at level 0, x constr at level 0).
Notation "S -> T" := (arrow S T) (in custom lambda at level 50, right associativity).
2024-08-28 11:47:23 -07:00
Notation "'Π' b" :=
(pi b) (in custom lambda at level 90,
b custom lambda at level 99, left associativity).
Notation "x · y" := (app1 x y) (in custom lambda at level 1, left associativity).
Notation "x ∙ y" := (app2 x y) (in custom lambda at level 1, left associativity).
2024-07-15 07:49:33 -07:00
Notation "'λ' t , x" :=
2024-08-28 11:47:23 -07:00
(abs1 t x) (in custom lambda at level 90,
2024-07-15 07:49:33 -07:00
t custom lambda at level 99,
x custom lambda at level 99,
left associativity).
2024-08-28 11:47:23 -07:00
Notation "'λ' , x" :=
(abs2 x) (in custom lambda at level 90,
x custom lambda at level 99,
left associativity).
2024-07-15 07:49:33 -07:00
Coercion var : nat >-> term.
Definition context := list type.
Definition environment := list (nat * type).
Fixpoint lookup (E : environment) (x : nat) : option type :=
match E with
| [] => None
| (x', σ) :: rest => if x =? x' then Some σ else lookup rest x
end.
Lemma lookup_in : forall E x σ,
lookup E x = Some σ -> In (x, σ) E.
Proof.
induction E.
- simpl; discriminate.
- intros.
destruct a as [y τ].
simpl in H.
destruct (x =? y) eqn:Heq.
{ apply eqb_eq in Heq; subst; inversion H; simpl; left; reflexivity. }
simpl.
right.
auto.
Qed.
2024-08-28 11:47:23 -07:00
Reserved Notation "'[' x ':=' s ']' t" (in custom lambda at level 20).
Fixpoint substi (x : nat) (s t : term) : term :=
match t with
| var y => if x =? y then s else var y
| free y => free y
| <{ m · n }> => <{ ([x := s] m) · ([x := s] n) }>
| <{ m n }> => <{ ([x := s] m) n }>
| <{ λ α, m }> => <{ λ α, [{x + 1} := s] m }>
| <{ λ , m }> => <{ λ , [x := s] m }>
end
where "'[' x ':=' s ']' t" := (substi x s t) (in custom lambda).
Reserved Notation "'[' x ':=' s ']ₐ' t" (in custom lambda at level 20).
Fixpoint ty_subst (x : nat) (s : type) (t : type) : type :=
match t with
| tyvar n => if n =? x then s else tyvar n
| tyfree y => tyfree y
| <{ α -> β }> => <{ [ x := s ] α -> [ x := s ] β }>
| <{ Π α }> => <{ Π [ {x + 1} := s ] α }>
end
where "'[' x ':=' s ']ₐ' t" := (ty_subst x s t) (in custom lambda).
Reserved Notation "'[' x ':=' s ']ₜ' t" (in custom lambda at level 20).
Fixpoint substiₜ (x : nat) (s : type) (t : term) : term :=
match t with
| var y => var y
| free y => free y
| <{ m · n }> => <{ ([ x := s ] m) · ([ x := s ] n) }>
| <{ m n }> => if type_eq_dec n (tyvar x) then
<{ m s }>
else <{ ([ x := s ] m) ([ x := s ] n) }>
| <{ λ α, m }> => <{ λ α, [ x := s ] m }>
| <{ λ , m }> => <{ λ , [ x := s ] m }>
end
where "'[' x ':=' s ']ₜ' t" := (substiₜ x s t) (in custom lambda).
Reserved Notation "E ';' Γ '|-' t '::' T"
(at level 101, t custom lambda, T custom lambda at level 0).
2024-07-15 07:49:33 -07:00
Inductive derivation : environment -> context -> term -> type -> Prop :=
| free_rule : forall E Γ x σ,
lookup E x = Some σ -> E ; Γ |- {free x} :: σ
| var_rule : forall E Γ x σ,
nth_error Γ x = Some σ -> E ; Γ |- x :: σ
2024-08-28 11:47:23 -07:00
| app_rule1 : forall E Γ t1 t2 σ τ,
2024-07-15 07:49:33 -07:00
(E ; Γ |- t1 :: (σ -> τ)) ->
(E ; Γ |- t2 :: σ) ->
2024-08-28 11:47:23 -07:00
(E ; Γ |- t1 · t2 :: τ)
| app_rule2 : forall E Γ m a b,
(E ; Γ |- m :: Π a) ->
(E ; Γ |- m b :: ([ 0 := b ] a))
| abs_rule1 : forall E Γ σ τ m,
2024-07-15 07:49:33 -07:00
(E ; σ :: Γ |- m :: τ) ->
(E ; Γ |- λ σ, m :: (σ -> τ))
2024-08-28 11:47:23 -07:00
| abs_rule2 : forall E Γ m a,
(E ; Γ |- m :: a) ->
(E ; Γ |- λ, m :: Π a)
2024-07-15 07:49:33 -07:00
where "E ; Γ '|-' t '::' T" := (derivation E Γ t T).
Hint Constructors derivation : core.
2024-08-28 11:47:23 -07:00
Section examples.
Let α := tyfree 0.
Let β := tyfree 1.
Let γ := tyfree 2.
Example identity :
[] ; [] |- λ , (λ <0>, 0) :: Π <0> -> <0>.
Proof using Type.
auto.
Qed.
Example identity_spec :
[] ; [] |- (λ , λ <0>, 0) α :: (α -> α).
Proof using Type.
apply app_rule2 with (a := <{<0> -> <0>}>).
exact identity.
Qed.
Example comp :
[] ; [] |- λ , λ , λ , λ <2> -> <1>, λ <1> -> <0>, λ <2>, 1 · (2 · 0)
:: Π Π Π (<2> -> <1>) -> (<1> -> <0>) -> <2> -> <0>.
Proof using Type.
repeat econstructor.
Qed.
Example comp_spec :
[] ; [] |- ((λ , λ , λ , λ <2> -> <1>, λ <1> -> <0>, λ <2>, 1 · (2 · 0)) α β γ)
:: ((α -> β) -> (β -> γ) -> α -> γ).
Proof using Type.
apply app_rule2 with (a := <{(α -> β) -> (β -> <0>) -> α -> <0>}>).
apply app_rule2 with (a := <{Π (α -> <1>) -> (<1> -> <0>) -> α -> <0>}>).
apply app_rule2 with (a := <{Π Π (<2> -> <1>) -> (<1> -> <0>) -> <2> -> <0>}>).
repeat econstructor.
Qed.
Example book :
[] ; [] |- λ , λ <0> -> <0>, λ <0>, 1 · (1 · 0) :: Π (<0> -> <0>) -> <0> -> <0>.
Proof using Type.
repeat econstructor.
Qed.
End examples.
2024-07-15 07:49:33 -07:00
Theorem uniqueness_of_types : forall E Γ t σ τ,
E ; Γ |- t :: σ -> E ; Γ |- t :: τ -> σ = τ.
Proof.
intros E Γ t.
generalize dependent Γ.
induction t; intros; inversion H; inversion H0; subst;
try (rewrite H4 in H9; inversion H9; reflexivity).
- apply (IHt1 Γ <{σ0 -> σ}> <{σ1 -> τ}> H5) in H12.
inversion H12.
reflexivity.
2024-08-28 11:47:23 -07:00
- assert (G : pi a = pi a0) ; eauto.
inversion G.
reflexivity.
2024-07-15 07:49:33 -07:00
- assert (G : τ0 = τ1) ; eauto.
subst.
reflexivity.
2024-08-28 11:47:23 -07:00
- apply (f_equal pi).
eauto.
2024-07-15 07:49:33 -07:00
Qed.
Fixpoint find_type (E : environment) (Γ : context) (m : term) : option type :=
match m with
| var x => nth_error Γ x
| free x => lookup E x
2024-08-28 11:47:23 -07:00
| app1 t1 t2 => match find_type E Γ t1, find_type E Γ t2 with
| Some (<{ σ -> τ }>), Some σ' =>
if type_eq_dec σ σ'
then Some τ
else None
| _, _ => None
end
| app2 t σ => match find_type E Γ t with
| Some (pi τ) => Some <{[ 0 := σ ] τ}>
| _ => None
end
| abs1 σ t => option_map (arrow σ) (find_type E (σ :: Γ) t)
| abs2 t => option_map pi (find_type E Γ t)
2024-07-15 07:49:33 -07:00
end.
Theorem find_type_correct : forall E Γ t σ,
find_type E Γ t = Some σ -> E ; Γ |- t :: σ.
Proof.
intros E Γ t.
generalize dependent Γ.
induction t ; auto.
- intros.
simpl in H.
destruct (find_type E Γ t1) eqn:Heq ; inversion H.
destruct t0 ; inversion H.
destruct (find_type E Γ t2) eqn:Heq2; inversion H.
destruct (type_eq_dec t0_1 t0); inversion H.
subst.
eauto.
2024-08-28 11:47:23 -07:00
- intros.
simpl in H.
destruct (find_type E Γ t0) eqn:Heq; simpl in H; inversion H ; eauto.
destruct t2; inversion H; auto.
2024-07-15 07:49:33 -07:00
- intros.
simpl in H.
destruct (find_type E (t0 :: Γ) t1) eqn:Heq; inversion H.
auto.
2024-08-28 11:47:23 -07:00
- intros.
simpl in H.
destruct (find_type E Γ t0) eqn:Heq; inversion H.
auto.
Qed.
Definition legal (t : term) := exists E Γ σ, E ; Γ |- t :: σ.
Lemma no_self_referential_types : forall σ τ,
σ <> <{ σ -> τ }>.
Proof.
induction σ; intros τ contra; inversion contra.
apply (IHσ1 σ2).
assumption.
Qed.
Theorem no_self_application : forall t,
~ (legal <{t · t}>).
Proof.
intros t [E [Γ [σ H]]].
inversion H.
subst.
assert (G : <{ σ0 -> σ }> = σ0).
{ apply uniqueness_of_types with (E := E) (Γ := Γ) (t := t); assumption. }
symmetry in G.
exact (no_self_referential_types σ0 σ G).
2024-07-15 07:49:33 -07:00
Qed.
2024-08-28 11:47:23 -07:00
Fixpoint β_reduce (m : term) : term :=
match m with
| var x => var x
| free x => free x
| <{ (λ α , m) · n }> => <{ [0 := n] m }>
| <{ m · n }> => <{ {β_reduce m} · {β_reduce n} }>
| <{ λ α, m }> => <{ λ α , {β_reduce m} }>
| <{ (λ , m) n }> => <{ [0 := n] m }>
| <{ m n }> => <{ {β_reduce m} n }>
| <{ λ , m }> => <{ λ, {β_reduce m} }>
end.
Reserved Notation "t1 '→β' t2" (at level 50).
Inductive β_reduce_r : term -> term -> Prop :=
| var_β : forall x, var x β var x
| free_β : forall x, free x β free x
| redex1_β : forall α m n, <{ (λ α, m) · n }> β <{ [0 := n] m }>
| redex2_β : forall m n, <{ (λ , m) n }> β <{ [0 := n] m }>
| app1_compat_β_l : forall m n m', m β m' -> <{ m · n }> β <{ m' · n }>
| app1_compat_β_r : forall m n n', n β n' -> <{ m · n }> β <{ m · n' }>
| app2_compat_β : forall m n m', m β m' -> <{ m n }> β <{ m' n }>
| abs1_compat_β : forall α m m', m β m' -> <{ λ α, m }> β <{ λ α, m' }>
| abs2_compat_β : forall m m', m β m' -> <{ λ , m }> β <{ λ , m' }>
where "t1 '→β' t2" := (β_reduce_r t1 t2).
Definition β_reduce_r_ext := clos_refl_sym_trans term β_reduce_r.
Notation "t1 '↠β' t2" := (β_reduce_r_ext t1 t2) (at level 50).
(* Section church_rosser. *)
(* Reserved Notation "t1 '↠' t2" (at level 50). *)
(* Inductive helper_relation : term -> term -> Prop := *)
(* | sym_h : forall t, t ↠ t *)
(* | abs1_compat_h : forall α m m', m ↠ m' -> <{ λ α, m }> ↠ <{ λ α, m' }> *)
(* | abs2_compat_h : forall m m', m ↠ m' -> <{ λ , m }> ↠ <{ λ , m' }> *)
(* | app1_compat_h : forall m m' n n', m ↠ m' -> n ↠ n' -> <{ m · n }> ↠ <{ m' · n' }> *)
(* | app2_compat_h : forall m m' n, m ↠ m' -> <{ m ∙ n }> ↠ <{ m' ∙ n }> *)
(* | redex1_h : forall α m n, <{ (λ α, m) · n }> ↠ <{ [0 := n] m }> *)
(* | redex2_h : forall m n, <{ (λ , m) ∙ n }> ↠ <{ [0 := n]ₜ m }> *)
(* where "t1 '↠' t2" := (helper_relation t1 t2). *)
(* Lemma substitution_lemma : forall M N L x y, *)
(* x < y -> *)
(* <{[y := L] ([x := N] M)}> = <{[x := [y := L] N] ([{y + 1} := L] M)}>. *)
(* Proof. *)
(* induction M ; auto. *)
(* - intros N L x y H. *)
2024-07-15 07:49:33 -07:00
(* simpl. *)
2024-08-28 11:47:23 -07:00
(* destruct (x =? n) eqn:Heq. *)
(* + rewrite eqb_eq in Heq. *)
(* subst. *)
(* destruct (y =? n) eqn:Heq2. *)
(* { rewrite eqb_eq in Heq2. symmetry in Heq2. apply lt_neq in H. contradiction. } *)
(* apply lt_lt_add_r with (p := 1) in H. *)
(* apply lt_neq in H. *)
(* apply eqb_neq in H. *)
(* rewrite eqb_sym in H. *)
(* rewrite H. *)
(* simpl. *)
(* rewrite eqb_refl. *)
(* reflexivity. *)
(* + destruct (y =? n) eqn:Heq2. *)
(* * simpl. *)
(* rewrite Heq2. *)
(* * simpl. *)
(* rewrite Heq2. *)
(* rewrite Heq. *)
(* reflexivity. *)
(* - intros n p x y H1 H2. *)
(* simpl. *)
(* rewrite IHm1 ; auto. *)
(* rewrite IHm2 ; auto. *)
(* - intros n p x y H1 H2. *)
(* simpl. *)
(* rewrite IHm ; auto. *)
(* - intros n p x y H1 H2. *)
(* simpl. *)
(* rewrite IHm. *)
(* + Abort. *)
(* Lemma reduct_in_subst : forall m n n' x, *)
(* n ↠ n' -> <{ [x := n] m }> ↠ <{ [x := n'] m }>. *)
(* Proof. *)
(* induction m ; try (intros; simpl; constructor; auto). *)
(* intros ' x H. *)
(* simpl. *)
(* destruct (x =? n) ; auto using helper_relation. *)
(* Qed. *)
(* Lemma subst_reduct : forall m m' n n' x, *)
(* m ↠ m' -> n ↠ n' -> <{ [x := n] m }> ↠ <{ [x := n'] m' }>. *)
(* intros m m' n n' x H. *)
(* generalize dependent n. *)
(* generalize dependent n'. *)
(* generalize dependent x. *)
(* induction H ; try (intros; simpl; auto using helper_relation; fail). *)
(* - intros x n' n H. *)
(* apply reduct_in_subst. *)
(* assumption. *)
(* - intros x p q H. *)
(* simpl. *)
(* (* | redex1_h : forall α m n, <{ (λ α, m) · n }> ↠ <{ [0 := n] m }> *) *)
(* assert (G : <{ (λ α, [{x + 1} := q] m) · ([x := q] n) }> *)
(* ↠ <{ [0 := [x := q] n] ([{x + 1} := q] m) }>). *)
(* { apply redex1_h. } *)
(* Lemma abs1_char : forall α m n, *)
(* <{ λ α, m }> ↠ n -> exists m', n = <{ λ α, m' }> /\ m ↠ m'. *)
(* Proof. *)
(* intros α m n H1. *)
(* inversion H1; subst. *)
(* - exists m. *)
(* split; auto. *)
(* constructor. *)
(* - exists m'. *)
(* split; auto. *)
(* Qed. *)
(* Lemma abs2_char : forall m m', *)
(* <{ λ, m }> ↠ m' -> exists n, m' = <{λ, n}> /\ m ↠ n. *)
(* Proof. *)
(* intros m m' H. *)
(* inversion H; subst. *)
(* - exists m. *)
(* split; auto; try constructor. *)
(* - exists m'0. *)
(* split; auto; try constructor. *)
(* Qed. *)
(* Lemma app1_char : forall m n l, *)
(* <{ m · n }> ↠ l *)
(* -> (exists m' n', l = <{ m' · n' }> /\ m ↠ m' /\ n ↠ n') \/ *)
(* (exists α p, m = <{ λ α, p }> /\ l = <{[0 := n] p}>). *)
(* Proof. *)
(* intros m n l H. *)
(* inversion H ; subst ; auto. *)
(* - left. *)
(* exists m, n. *)
(* split ; auto. *)
(* split ; constructor. *)
(* - left. *)
(* exists m', n'. *)
(* auto. *)
(* - right. *)
(* exists α, m0. *)
(* auto. *)
(* Qed. *)
(* Lemma helper_diamond : forall m m1 m2, *)
(* m ↠ m1 -> m ↠ m2 -> exists n, m1 ↠ n /\ m2 ↠ n. *)
(* Proof. *)
(* intros m m1 m2 H1. *)
(* generalize dependent m2. *)
(* induction H1. *)
(* - intros m2 H2. *)
(* exists m2. *)
(* split ; try constructor; auto. *)
(* - intros m2 H2. *)
(* apply abs1_char in H2 as [t [G1 G2]]. *)
(* subst. *)
(* apply (IHhelper_relation t) in G2 as [n [F1 F2]]. *)
(* exists <{λ α, n}>. *)
(* split; constructor; assumption. *)
(* - intros m2 H2. *)
(* apply abs2_char in H2 as [n [G1 G2]]. *)
(* subst. *)
(* apply (IHhelper_relation n) in G2 as [n' [F1 F2]]. *)
(* exists <{λ, n'}>. *)
(* split; constructor; assumption. *)
(* - intros m2 H2. *)
(* apply app1_char in H2 as [[p [q [G1 [G2 G3]]]] | H2]; subst. *)
(* + apply IHhelper_relation1 in G2 as [p' [Hp1 Hp2]]. *)
(* apply IHhelper_relation2 in G3 as [q' [Hq1 Hq2]]. *)
(* exists <{p' · q'}>. *)
(* split; auto using helper_relation. *)
(* + destruct H2 as [α [p [G1 G2]]]. *)
(* subst. *)
(* apply abs1_char in H1_ as [l [Hm Hl]]. *)
(* subst. *)
(* exists <{[0 := n'] l}>. *)
(* split. *)
(* * constructor. *)
(* * *)
(* (* apply IHhelper_relation1 in H1_. *) *)
(* (* apply IHhelper_relation2 in H1_0. *) *)
(* End church_rosser. *)
Reserved Notation "t1 ≡ t2" (at level 50).
Inductive β_equiv : term -> term -> Prop :=
| reduce : forall t1 t2, β_reduce t1 = t2 -> t1 t2
| refl_β : forall t, t t
| sym_β : forall t1 t2, t1 t2 -> t2 t1
| trans_β : forall t1 t2 t3,
t1 t2 -> t2 t3 -> t1 t3
where "t1 ≡ t2" := (β_equiv t1 t2).
Hint Constructors β_equiv : core.
Instance β_equiv_equiv : Equivalence β_equiv.
Proof.
constructor; eauto.
Qed.
(* Proving these requires proving CR *)
Instance β_equiv_app1_l {t : term} : Proper (β_equiv ==> β_equiv) (fun s => app1 s t).
Proof.
Abort.
Instance β_equiv_app2 {σ : type} : Proper (β_equiv ==> β_equiv) (fun t => app2 t σ).
Proof.
Abort.
Instance β_equiv_abs2 : Proper (β_equiv ==> β_equiv) abs2.
Proof.
intros x y H.
induction H; auto.
- constructor.
simpl.
rewrite H.
reflexivity.
- rewrite IHβ_equiv1.
rewrite IHβ_equiv2.
reflexivity.
Qed.
Example test t1 t2 : t1 t2 -> abs2 t1 abs2 t2.
Proof.
intros H.
rewrite H.
reflexivity.
Qed.
Ltac simple_compute :=
repeat (eapply trans_β;
try (apply reduce; reflexivity)).
Section book_examples.
Let α := tyfree 0.
Let β := tyfree 1.
Let γ := tyfree 2.
Example ex3_2 :
[] ; [] |- λ , λ , λ , λ <2> -> <1>, λ <1> -> <0>, λ <2>, 1 · (2 · 0)
:: Π Π Π (<2> -> <1>) -> (<1> -> <0>) -> <2> -> <0>.
Proof using Type.
repeat econstructor.
Qed.
Let nat' := tyfree 3.
Let bool' := tyfree 4.
Example ex3_4 :
[] ; [] |- (λ , λ , λ <1> -> <1>, λ <1> -> <0>, λ <1>, 1 · (2 · (2 · 0))) nat' bool'
:: ((nat' -> nat') -> (nat' -> bool') -> nat' -> bool').
Proof using Type.
apply app_rule2 with (a := <{(nat' -> nat') -> (nat' -> <0>) -> nat' -> <0>}>).
apply app_rule2 with (a := <{Π (<1> -> <1>) -> (<1> -> <0>) -> <1> -> <0>}>).
repeat econstructor.
Qed.
Example ex3_5 : forall σ,
[(0, <{Π <0>}>)] ; [] |- {free 0} σ :: σ.
Proof using Type.
intros.
apply app_rule2 with (a := <{<0>}>).
auto.
Qed.
Example ex3_6a : [] ; [] |-
λ , λ , λ nat' -> <1>, λ <1> -> nat' -> <0> , λ nat', 1 · (2 · 0) · 0 ::
Π Π (nat' -> <1>) -> (<1> -> nat' -> <0>) -> nat' -> <0>.
Proof using Type.
repeat econstructor.
Qed.
Example ex3_6b : [] ; [] |-
λ, λ ((α -> γ) -> <0>), λ (α -> β), λ (β -> γ),
2 · (λ α, 1 · (2 · 0)) ::
Π ((α -> γ) -> <0>) -> (α -> β) -> (β -> γ) -> <0>.
Proof using Type.
repeat econstructor.
Qed.
End book_examples.
Section numbers_bools.
Definition nat' := <{Π (<0> -> <0>) -> <0> -> <0>}>.
Definition zero := <{λ , λ <0> -> <0>, λ <0>, 0}>.
Definition one := <{λ , λ <0> -> <0>, λ <0>, 1 · 0}>.
Definition two := <{λ , λ <0> -> <0>, λ <0>, 1 · (1 · 0)}>.
Definition succ := <{λ {nat'}, λ , λ <0> -> <0>, λ <0>, 1 · (2 <0> · 1 · 0)}>.
Definition add := <{λ {nat'}, λ {nat'}, λ , λ <0> -> <0>, λ <0>,
3 <0> · 1 · (2 <0> · 1 · 0)
}>.
Example zero_nat : [] ; [] |- zero :: nat'.
Proof using Type.
repeat econstructor.
Qed.
Example succ_nat_nat : [] ; [] |- succ :: (nat' -> nat').
Proof using Type.
unfold nat'.
repeat econstructor.
apply app_rule2 with (a := <{(<0> -> <0>) -> <0> -> <0>}>).
repeat econstructor.
Qed.
Example succ_zero_one : app1 succ zero one.
Proof using Type.
simple_compute.
Qed.
Example succ_one_two : app1 succ one two.
Proof using Type.
simple_compute.
Qed.
Example one_p_one_two : <{{add} · {one} · {one}}> two.
Proof using Type.
simple_compute.
Qed.
Definition bool' := <{Π <0> -> <0> -> <0>}>.
Definition true := <{λ , λ <0>, λ <0>, 1}>.
Definition false := <{λ , λ <0>, λ <0>, 0}>.
Definition neg := <{λ {bool'}, λ , (0 <0>) · ({false} <0>) · ((true) <0>)}>.
Example neg_true_false : app1 neg true false.
Proof using Type.
simple_compute.
Qed.
Example neg_false_true : app1 neg false true.
Proof using Type.
simple_compute.
Qed.
Definition M := <{
λ {bool'}, λ {bool'}, λ , λ <0>, λ <0>,
3 <0> · (2 <0> · 1 · 0) · (2 <0> · 0 · 0)
}>.
(* M is and *)
Example M_true_true : <{{M} · {true} · {true}}> true.
Proof using Type.
simple_compute.
Qed.
Example M_true_false : <{{M} · {true} · {false}}> false.
Proof using Type.
simple_compute.
Qed.
Example M_false_true : <{{M} · {false} · {true}}> false.
Proof using Type.
simple_compute.
Qed.
Example M_false_false : <{{M} · {false} · {false}}> false.
Proof using Type.
simple_compute.
Qed.
Definition or := <{
λ {bool'}, λ {bool'},
1 {bool'} · {true} · 0
}>.
Example or_true_true : <{{or} · {true} · {true}}> true.
Proof using Type.
simple_compute.
Qed.
Example or_true_false : <{{or} · {true} · {false}}> true.
Proof using Type.
simple_compute.
Qed.
Example or_false_true : <{{or} · {false} · {true}}> true.
Proof using Type.
simple_compute.
Qed.
Example or_false_false : <{{or} · {false} · {false}}> false.
Proof using Type.
simple_compute.
Qed.
Definition xor := <{
λ {bool'}, λ {bool'}, 1 {bool'} · ({neg} · 0) · 0
}>.
Example xor_true_true : <{{xor} · {true} · {true}}> false.
Proof using Type.
simple_compute.
Qed.
Example xor_true_false : <{{xor} · {true} · {false}}> true.
Proof using Type.
simple_compute.
Qed.
Example xor_false_true : <{{xor} · {false} · {true}}> true.
Proof using Type.
simple_compute.
Qed.
Example xor_false_false : <{{xor} · {false} · {false}}> false.
Proof using Type.
simple_compute.
Qed.
Definition impl := <{
λ {bool'}, λ {bool'},
1 {bool'} · 0 · {true}
}>.
Example impl_true_true : <{{impl} · {true} · {true}}> true.
Proof using Type.
simple_compute.
Qed.
Example impl_true_false : <{{impl} · {true} · {false}}> false.
Proof using Type.
simple_compute.
Qed.
Example impl_false_true : <{{impl} · {false} · {true}}> true.
Proof using Type.
simple_compute.
Qed.
Example impl_false_false : <{{impl} · {false} · {false}}> true.
Proof using Type.
simple_compute.
Qed.
Definition is_zero := <{
λ {nat'}, 0 {bool'} · (λ {bool'}, {false}) · {true}
}>.
Example zero_is_zero : app1 is_zero zero true.
Proof using Type.
simple_compute.
Qed.
Example one_not_zero : app1 is_zero one false.
Proof using Type.
simple_compute.
Qed.
End numbers_bools.