perga/examples/algebra.pg

151 lines
6 KiB
Text
Raw Normal View History

@include logic.pg
2024-11-20 07:37:57 -08:00
section Magma
2024-11-20 07:37:57 -08:00
variable (G : ★);
def binop := G → G → G;
def = := eq G;
infixl 1 =;
variable (* : binop);
infixl 20 *;
def *> (a b : G) := b * a;
infixl 20 *>;
2024-12-13 22:45:37 -08:00
section Semigroup
def assoc := forall (a b c : G), a * (b * c) = a * b * c;
hypothesis (Hassoc : assoc);
def assoc_op (a b c : G) : a *> (b *> c) = a *> b *> c :=
eq_sym G (a *> b *> c) (a *> (b *> c)) (Hassoc c b a);
section Monoid
variable (e : G);
def id_l := forall (a : G), e * a = a;
def id_r := forall (a : G), a * e = a;
hypothesis (Hid_l : id_l);
hypothesis (Hid_r : id_r);
def id_l_op : forall (a : G), e *> a = a := Hid_r;
def id_r_op : forall (a : G), a *> e = a := Hid_l;
def left_id_unique (a : G) : #id_l G (*) a → a = e :=
fun (H : #id_l G (*) a) =>
eq_trans G a (a * e) e
(eq_sym G (a * e) a (Hid_r a))
(H e);
def right_id_unique (a : G) : #id_r G (*) a → a = e := #left_id_unique G (*>) e Hid_l a;
section Group
variable (i : G → G);
hypothesis (Hinv_l : forall (a : G), i a * a = e);
hypothesis (Hinv_r : forall (a : G), a * i a = e);
def left_inv_unique (a b : G) (h : b * a = e) : b = i a :=
eq_trans G b (b * e) (i a)
(eq_sym G (b * e) b (Hid_r b))
2024-12-10 20:31:53 -08:00
(eq_trans G (b * e) (b * (a * i a)) (i a)
2024-12-10 23:36:34 -08:00
(eq_cong G G e (a * i a) ((*) b)
(eq_sym G (a * i a) e (Hinv_r a)))
2024-12-10 20:31:53 -08:00
(eq_trans G (b * (a * i a)) (b * a * i a) (i a)
(Hassoc b a (i a))
2024-12-10 20:31:53 -08:00
(eq_trans G (b * a * i a) (e * i a) (i a)
(eq_cong G G (b * a) e ([z : G] z * i a) h)
(Hid_l (i a)))));
def right_inv_unique (a b : G) (h : a * b = e) : b = i a :=
#left_inv_unique G (*>) assoc_op e Hid_r Hid_l i Hinv_l a b h;
def inverse_involutive (a : G) : i (i a) = a :=
eq_sym G a (i (i a)) (right_inv_unique (i a) a (Hinv_l a));
def shoes_and_socks (a b : G) : i (a * b) = i b * i a :=
eq_sym G (i b * i a) (i (a * b))
(right_inv_unique (a * b) (i b * i a)
(let
(under_ai (x y : G) (h : x = y) := eq_cong G G x y ([z : G] z * (i a)) h)
in
eq_trans G (a * b * (i b * i a)) (a * b * i b * i a) e
(Hassoc (a * b) (i b) (i a))
(eq_trans G (a * b * i b * i a) (a * (b * i b) * i a) e
(under_ai (a * b * i b) (a * (b * i b)) (eq_sym G (a * (b * i b)) (a * b * i b) (Hassoc a b (i b))))
(eq_trans G (a * (b * i b) * i a) (a * e * i a) e
(eq_cong G G (b * i b) e (fun (x : G) => (a * x * i a)) (Hinv_r b))
(eq_trans G (a * e * i a) (a * i a) e
(under_ai (a * e) a (Hid_r a))
(Hinv_r a))))
end));
def cancel_l (a b c : G) (h : a * b = a * c) : b = c :=
eq_trans G b (e * b) c
(eq_sym G (e * b) b (Hid_l b))
(eq_trans G (e * b) (i a * a * b) c
(eq_cong G G e (i a * a) ([x : G] x * b)
(eq_sym G (i a * a) e (Hinv_l a)))
(eq_trans G (i a * a * b) (i a * (a * b)) c
(eq_sym G (i a * (a * b)) (i a * a * b) (Hassoc (i a) a b))
(eq_trans G (i a * (a * b)) (i a * (a * c)) c
(eq_cong G G (a * b) (a * c) ((*) (i a)) h)
(eq_trans G (i a * (a * c)) (i a * a * c) c
(Hassoc (i a) a c)
(eq_trans G (i a * a * c) (e * c) c
(eq_cong G G (i a * a) e ([x : G] x * c) (Hinv_l a))
(Hid_l c))))));
def cancel_r (a b c : G) (h : b * a = c * a) : b = c :=
#cancel_l G (*>) assoc_op e Hid_r i Hinv_r a b c h;
def abelian : ★ := forall (a b : G), a * b = b * a;
def left_right_cancel : (forall (x y z : G), x * y = z * x → y = z) → abelian :=
fun (h : forall (x y z : G), x * y = z * x → y = z) (a b : G) =>
h (i a) (a * b) (b * a)
(eq_trans G (i a * (a * b)) (i a * a * b) (b * a * i a)
(Hassoc (i a) a b)
(eq_trans G (i a * a * b) (e * b) (b * a * i a)
(eq_cong G G (i a * a) e ([x : G] x * b) (Hinv_l a))
(eq_trans G (e * b) b (b * a * i a)
(Hid_l b)
(eq_trans G b (b * e) (b * a * i a)
(eq_sym G (b * e) b (Hid_r b))
(eq_trans G (b * e) (b * (a * i a)) (b * a * i a)
(eq_cong G G e (a * i a) ((*) b) (eq_sym G (a * i a) e (Hinv_r a)))
(Hassoc b a (i a)))))));
def inv_distrib_abelian : (forall (a b : G), i (a * b) = i a * i b) → abelian :=
fun (h : forall (a b : G), i (a * b) = i a * i b) (a b : G) =>
eq_trans G (a * b) (i (i a) * b) (b * a)
(eq_cong G G a (i (i a)) ([x : G] x * b) (eq_sym G (i (i a)) a (inverse_involutive a)))
(eq_trans G (i (i a) * b) (i (i a) * i (i b)) (b * a)
(eq_cong G G b (i (i b)) ((*) (i (i a))) (eq_sym G (i (i b)) b (inverse_involutive b)))
(eq_trans G (i (i a) * i (i b)) (i (i b * i a)) (b * a)
(eq_sym G (i (i b * i a)) (i (i a) * i (i b)) (shoes_and_socks (i b) (i a)))
(eq_trans G (i (i b * i a)) (i (i b) * i (i a)) (b * a)
(h (i b) (i a))
(eq_trans G (i (i b) * i (i a)) (b * i (i a)) (b * a)
(eq_cong G G (i (i b)) b ([x : G] x * i (i a)) (inverse_involutive b))
(eq_cong G G (i (i a)) a ((*) b) (inverse_involutive a))))));
def order_two (a : G) : a * a = e → a = i a := right_inv_unique a a;
def all_order_two_abelian : (forall (a : G), a * a = e) → abelian :=
fun (h : forall (a : G), a * a = e) =>
inv_distrib_abelian (fun (a b : G) =>
(eq_trans G (i (a * b)) (a * b) (i a * i b)
(eq_sym G (a * b) (i (a * b)) (order_two (a * b) (h (a * b))))
(eq_trans G (a * b) (a * i b) (i a * i b)
(eq_cong G G b (i b) ((*) a) (order_two b (h b)))
(eq_cong G G a (i a) ([x : G] x * i b) (order_two a (h a))))));
2024-12-13 22:45:37 -08:00
end Group
end Monoid
end Semigroup
end Magma